Tire-road friction measurement system by detection of slip angle

知能機械システム工学コース

機械・航空システム制御研究室 1205040 合田 和輝

する.図1の上方向がタイヤの移動方向であり、タイヤの向 きとの差をスリップ角という.スリップ角が生じると、タイ ヤの向きに直角方向に横力が発生し、車両からタイヤに与え られる遠心力と逆向きに働くことが考えられる.また、路面 からは、タイヤの弾性変形による横力が発生することが考え られる.

本報告で提案するµの推定原理は、車両の運動から求めた 横力とタイヤの弾性変形により発生する横力がつりあうと 仮定し、2つの横力を等値することによって求めるものであ る.ただし、タイヤの慣性力は無視できるものとし、従動輪 を考え駆動力や制動力が働かないと仮定する.

2.2 車両の運動から求める横力

横力をタイヤの移動方向と直角方向に分解した力をコー ナリングフォースFcorとし、車両からタイヤに与えられる遠 心力とつりあうと仮定する.遠心力は、タイヤに垂直に負荷 される重量分が関与すると考える.タイヤへの負荷質量をm とし、図1よりコーナリングフォースFcorと横力の関係を踏 まえ、車両運動から求める横力Fs1は次式で表される.

$$F_{s1} = \frac{mv^2}{R}\cos\beta \tag{1}$$

2.3 タイヤの弾性変形による横力2.3.1 タイヤモデル

タイヤモデルを図2に示す.図2左図に示すようにタイヤ は、リムの外周部にカーカス部、ブレーカを有し、最外周部 にトレッドゴム(弾性体)があるモデルを考える.タイヤモ デルが、図2右図のようにスリップ角βをもって横滑りをし ながら転動する場合、トレッド表面が接地前端で路面と接地 し、以後路面に粘着して静摩擦から動摩擦へ変わる点s(す べり位置s)まで移動する.すべり位置s以降は、静摩擦から 動摩擦に移行するため滑り状態となり、接地後端で元の状態 に戻る⁽³⁾.

記号の説明

а	:	定数
β	:	スリップ角
F_c	:	遠心力
F_{cor}	:	コーナリングフォース
F_{s1}	:	車両運動から求める横力
F_{s2}	:	タイヤの弾性変形から求める横力
g	:	重力加速度
G	:	トレッドゴムの横弾性定数
l	:	接地長さ
т	:	タイヤへの負荷質量
P(x)	:	タイヤの周方向の接地圧力分布
R	:	旋回半径
S	:	すべり位置
v	:	車速
W	:	接地幅
θ_d	:	車両の向き
θ_t	:	車両の進行方向
ω	:	角速度
μ	:	路面摩擦係数

1. はじめに

気温や天候の影響により路面状況は大きく変化する.ドラ イバーは,路面状況に応じた適切な運転操作が要求されるが, 路面変化に適応することができず,車両事故が発生している. 冬季はスリップによる車両事故が多く見受けられており⁽¹⁾, 事故原因として路面摩擦係数(以下, µ)の低下が挙げられ る.スリップ事故の対策としては,路面の滑りやすさを表す 指標であるµをリアルタイムで検知し,低下している場合は ドライバーに注意喚起するシステムが有効であると考える. 加えて,近年開発が進められている横滑り防止システム

(Electronic Stability Control, ESC) などの車両挙動制御技術 などに対し、検知したµを制御入力として使用することで、 路面状況を考慮した車両制御が可能となり,安全性の向上が 見込めると考える.

現在、μの測定は一般車に測定用タイヤを追加した車両⁽²⁾ などを用いて行われており、大型な装置を必要としたり、測 定範囲が限定的であるといった問題がある.本研究では、μを より簡便かつリアルタイムでの検出を可能にする推定方法 を提案し、一般車の走行安全性の向上を図ることを目的とす る.

本論文は、旋回時の車両運動とタイヤカに着目したµ推定 システムを提案する.今回、GPS 信号を用いて定常円旋回時 の車両運動を測定しµ推定実験を行った.その際の走行実験 結果を示し、提案したシステムの有用性の検討を行う.

2. 路面摩擦係数推定原理

2.1 概要

車両が旋回する際のタイヤの運動を図1にもとづいて説明

2.3.2 接地圧力

タイヤの周方向の接地圧力分布P(x)は、タイヤ路面間の接 地長さlに対し図 3 左図のように分布すると仮定する. 接地 圧力分布P(x)は、xをタイヤが接地した点から後方への長さ とし、4 次の関数で表すと、次式となる.

$$P(x) = -a\left(-x^4 + 2lx^3 - \frac{3}{2}l^2x^2 + \frac{1}{2}l^3x\right)$$
(2)

タイヤへの荷重をmgとし,接地圧力分布を接地面全体に積 分したものがタイヤ荷重とつり合うことから定数aが求まる.

2.3.3 横力とすべり位置

タイヤの横方向の変形は、図2右図に示すようにスリップ 角 β の増加にともなってタイヤの変形量 Δy が増加してゆく. タイヤの変形量yを全接地区間において積分すると、横力に なる.図3右図のすべり位置s以降の曲線部分を破線のよう に直線と仮定すると、タイヤゴムの弾性変形による横力 F_{s2} は、三角形の面積の部分となり次式で表せる.

$$F_{s2} = \frac{1}{2} wGls \tan\beta \tag{3}$$

すべり位置sの点では、タイヤに働く横力と最大摩擦力がつ り合う⁽³⁾. そこで、すべり位置sにおいて微小区間dxを考え ると、次式が成り立つ.

$$wG \cdot \operatorname{stan}\beta dx = \mu \cdot P(s) \cdot wdx \tag{4}$$

(4)式よりすべり位置sを得ることができ、得られたすべり位置sを(3)式に代入することで、タイヤの弾性変形による横力 F_{s2} を導出できる.

Fig.3 Ground pressure and deformation of tire

2.4 路面摩擦係数µの推定

2通りの方法で求めた横力(1)式, (3)式を等値することでµに ついての関数を得ることができる.本研究は, (1)式, (3)式 から導出したモデルを用いてµを推定する.

実車を用いた測定実験

3.1 各諸量の測定方法

 μ の推定のために検出が必要な諸量は、車速v、旋回半径R、 スリップ角 β の3つである.これらの検出は、株式会社アイ ティエス21企画"GPS コンパス V100 /21"(以下、GPS コン パス)を使用する.本装置は、2つのGPS 受信部を持ちそれ ぞれの相対的な位置関係から、方位を計算する方位センサー であり、車両の向き θ_d と実際の車両進行方向 θ_t を測定できる. 以下に3つの諸量の検出方法を示す.

車速vは, GPS コンパスより進行速度が出力でき, これを 使用する.

旋回半径*R*は, GPS コンパスより車両が旋回する際の角速 度ωが出力できるため,以下の式で求まる.

$$R = \nu/\omega \tag{5}$$

スリップ角 β の測定は、前輪操舵角の検出が必要になるが、 本実験は駆動方式が FF(Front engine Front drive)の車両を使用 し、後輪タイヤでの μ の推定を行うため、前輪操舵角の検出 が不要となる.加えて、後輪タイヤでは、図4に示すように タイヤの向いている方向は車両部と固定されており常に一 定であると仮定できる.従って、後輪タイヤのスリップ角 β は、 以下の式で求まる.

$$\beta = \theta_t - \theta_d \tag{6}$$

 θ_t および θ_d は, GPS コンパスにて測定が可能であるため、これを利用する.

そのほか、トレッドゴムの横弾性定数Gは定数を与える.

Fig.4 Slip angle of rear tire

3.2 実験方法

今回,定常円旋回にてμの推定実験を行った.実験の概要 を表1に示す.実験日は2018年2月8日,天候は晴れ,路 面は乾いていた.実験場所は高知競馬場の第2駐車場で行っ た.車両はTOYOTA COROLLAを使用し,測定に用いた GPS コンパスは,図5のように車両の天井部に磁石で固定した. 実験の条件は,車速を20[Km/h]から5[Km/h]刻みで 50[Km/h]までとし,各速度に対し旋回半径を20~40[m]まで 5[m]刻みで変更した.旋回半径は,旋回中心点からメジャー を用いて測定し,赤コーンを円周上に配置した.実際の走行 は,指定の速度まで直線で加速,赤コーンの周りを速度を維 持しながら旋回し,5周したのちに,直線で減速・停車した. 各条件において5回繰り返し,平均値を求め実験結果とした.

GPS コンパスの設置場所は、タイヤの真上が望ましいが、 ボディー形状の要因から設置できない.本実験の解析は、 GPS コンパスから出力された生データを後方の左右輪のタ イヤへ座標変換を行った数値を使用する.

Fig.5 A vehicle on the GPS compass

Table.1 Outline of experiment			
Data	2018年2月8日		
Weather / state	晴れ / DRY		
Location	高知競馬場 第2駐車場		
Vehicle	TOYOTA COROLLA		
Apparatus	GPS コンパス V100/21		
Maggungement	車速,角速度,		
Measurement	車両の向き,進行方向,位置情報		
	左旋回を行う.		
	車速 : $20 \sim 50[Km/h]$ (5[Km/h]刻み)		
	旋回半径:20~40[m](5[m]刻み)		
Conditions	メジャーで測定,赤コーンを配置する.		
	1条件に対し,5周旋回を1セット.		
	計5セット行う.		
	サンプリング周波数:5[Hz]		

3.3 実験結果および考察

実験条件が車速 25[Km/h], 旋回半径 25[m]のときの走行 軌跡を図6に示す.図6より直線的に加速し、円周上を走行 後,直線的に減速・停車していることがわかる.また、ほぼ 真円を描いて走行できている. 図7に GPS コンパスで測定 した運動データに座標変換を行い,算出した後方の左右輪の 走行データを示す.青でプロットした値が右タイヤ(アウト サイド),赤でプロットした値が左タイヤ(インサイド)で ある. 図7より GPS コンパスの測定データは安定して取得 できており、旋回半径は、指定した条件より左タイヤで約 +2[m], 右タイヤで約+3.5[m]多くなっている. これは, 旋 回時,赤コーンとの接触を防ぐため,大回りして走行してい ることが影響している. 図7に示す各諸量を用いてμの推定 を行った. 推定したμを各実験条件において, 平均値を求め 横軸に旋回半径[m],スリップ角[deg]をとり,プロットした ものを図8に示す.実験データ点数の多い車速20~45[Km/h] に関しては、最小二乗法による近似線を引いている. 図8よ り推定されたµは実験条件により 0.6~1.0 の範囲を推移して いる. また、今回、実験場所のµを加速度を用いて測定した ところ 0.9 であった.

一般的にµは,表2に示すように路面状態によって一定値 をとり⁽⁴⁾,得られた結果を踏まえると,路面の状態は,DRY であると本システムで特定することができる.ただし,加速 度による測定値と差異が多いことから,本システムの推定精 度については,今後の課題である.今後は,タイヤモデルを よりリアルに再現できるよう改良することで推定精度の向 上を目指す.

4. おわりに

今回, 旋回時の車両運動を用いてµを推定するシステムを 提案した. 接地圧力分布を4次で近似し,µを推定するモデ ルを導出した. 導出したモデルを定常旋回による走行実験を 行い検証した結果,推定したµは,実験条件により0.6~1.0の 範囲を推移し路面状態を特定することができた. ただし,推 定精度向上を図るため,タイヤモデルについては今後の課題 である.

文献

- (1) 高田哲哉, "冬期気象条件下における交通事故発生形態について", 日本雪氷学会, No.29 (2010)
- (2) 独立行政法人土木研究所 寒地土木研究所, "路面の すべり摩擦係数測定機器の紹介"
- (3) 酒井秀男, "タイヤ工学 入門から応用まで", グラン プリ出版 (1987) pp.163-164,, pp.202.

(4) 安藤和彦 "路面のすべり摩擦と路面管理水準およびすべり事故" 土研センター,土木技術資料 52-5 (2010)

謝辞

研究遂行にあたり、高知競馬場の皆様に感謝の意の表します.

Fig.6 Running Locus of 25[Km/h], Turning radius 25[m]

Fig.7 Rear tire data of 25[Km/h], Turning radius 25[m]

Fig.8 Estimated tire-road friction on February 8, 2018

Table.2 General tire-road friction			
μ	路面の状態		
$1.2 \sim 0.7$	DRY		
$0.6 \sim 0.4$	WET		
0.3 ~ 0.2	SNOW		
$0.1 \sim 0.0$	ICE		