1. 緒言

燃料消費率の向上が求められる航空機のジェットエンジ ンは圧縮機,燃焼器,タービンなどで構成され^{III},これらの 要素効率向上は機関全体の効率向上に寄与する.圧縮機は一 般に多段の動翼列と静翼列で構成され,作動流体はこれらを 通過するに従い,仕事を与えられ圧縮される.圧縮機には高 圧力比,高効率が求められるが作動流体を低圧部から高圧部 に移動させる,不安定な逆圧力勾配の中で動作するため失速 が生じやすい.航空機エンジンの圧縮機は作動流体を,気圧 が変動する大気中から取り入れる為,特に失速余裕が求めら れる.失速余裕を改善する方法として,ケーシングに溝加工 を施すケーシングトリートメント^{I2I}があるが,圧力比や効率 の低下を引き起こす欠点がある.そこで本研究では圧力比及 び効率の低下を最小限に抑えつつ失速余裕の向上をするこ とを目指し,その第一ステップとして翼端間隙流れの計測を 行なう.

2. 実験とその方法

2.1 実験環境

本研究では翼端間隙流れを詳細に計測するため風洞に直 線翼列を設置して実験を行なった. 翼列はアルミニウムで製 作した NACA65-810 を 7 枚並べたものとし, 翼端とケーシン グとの間の運動を再現する可動壁を採用した. これを用いて 壁の運動の有無による差異を検証した.

2.2 実験装置

2.2.1 直線翼列風洞

図1は計測部である直線翼列風洞の吹出口である.最大風 速は40m/sの吹出風洞で任意に風速を変更できる.翼の流れ 計測は7枚のうち中央の翼で行なう.また直線翼列はいくつ かの食違い角に対して流入角を任意に変更できる.

2.2.2 可動壁

図2に可動壁装置を示す.ムービングベルト(緑色部)が可 動壁であり,流入角に応じてベルトの角度を任意に変更でき る.定格速度は70m/sであるがインバータを用いており,ベ ルトの速度は任意に変更できる.

システム工学群

航空エンジン超音速流研究室 1190039 岡 優介

2.3 直線翼列風洞の予備実験

直線翼列は環状翼列と同様に周期的な後流を発生させる 必要がある.図3は直線翼列風洞にて食違い角26.3度,流 入角30度,(迎角3.7度)の時の2~6枚目の翼下流の速度分 布である.計測には三孔ピトー管を用い,ステッピングモー タを用いて角度調整を行なった.図3より各翼下流で周期性 が認められる.

Fig.2 Moving wall.

Fig.3 Periodicity of velocity distribution.

2.4 可動壁の予備実験

可動壁はベルトの回転により流れを誘起させることを目 的に運転するがベルトに回転運動を与える為,わずかに振動 が生じる.計測部でのベルトの振動は良好な計測結果を得る ことができないばかりか近接する翼の破損を招く.そこで計 測部の振動を抑える為のデバイス(押え板)を作成し,流れへ の影響を確かめる試験を行なった.

2.4.1 運動によって誘起される流れの風速分布計測

風速分布を,熱線風速計と三軸トラバース装置を用いてデ バイスを備えない状態で計測した結果を図4に、デバイスを 備えた状態の結果を図5に示す.ベルトの速度は40m/sと し,熱線風速計のI型プローブをベルトに平行かつ水平に設 置した.またベルトと熱線風速計が最も近い部分の距離は 1mmとした.図下部に可動壁のベルトによって誘起された流 れが確認できた. デバイスの効果により風速の一様な分布を 得られている.

2.4.2 本体の振動数と風速の変動周波数計測

可動壁本体の振動が, 誘起する流れへの影響を調べるため の試験を行なった.可動壁を運転し,本体の振動波形と風速 の変動波形から求めたスペクトルをそれぞれ図 6,図7に示 す.可動壁の速度を10m/sとし,可動壁の振動は小型荷重計 を用いて計測し,サンプリング周波数1kHz,データ個数4096 個とし,解析には表計算ソフトEXCELのフーリエ解析を用い た.流れ計測には熱線風速計を用い,サンプリング周波数 0.1kHz,データ個数は4096 個,小型荷重計と同様の手法で 周波数成分を算出した.可動壁の振動が,誘起される流れに 及ぼす影響は確認できなかった.可動壁の振動による流れは ベルトに誘起される流れ方向に垂直であり,比較すると遥か に小さいため可動壁本体の振動は風速に影響を与える振幅 ではないと推測される.

2.5 可動壁のある直線翼列風洞の流れ計測

非接触の流れ計測が可能なレーザードップラー流速計 (LDV)を用いて翼端間隙流れを計測した. チップクリアラン スは3.5mm で翼端から約2.8mmの部分を面計測した. 主流速 度は30m/s,可動壁のベルトの速度 V_#は0m/sの場合と10m/s を比較,流入角46度,食違い角22.3度,(迎角23.7度)と した.

Fig.4 Flow velocity distribution without device.

Fig.5 Flow velocity distribution with device.

Fig.6 Spectrum of moving wall body.

Fig.7 Spectrum of flow velocity fluctuation.

3. 流れ計測の結果と考察

LDV で翼端近傍の流れを計測した結果で,可動壁を停止 している状態の結果を図8,可動壁を運転した場合の結果を 図9に示す. 翼から可動壁側へ向かう流れを正として示し, 図中黒線は翼を示す. 図左側が主流上流部である. 圧力の高 い腹面から背面に向けて漏れ流れを生じており,後縁付近で は翼端漏れ渦が形成されていることが推定できる.可動壁の 運動により漏れ流れが増大した.

Fig.8 LDV measurement result (*Vw*=0m/s).

4. 結言

本研究では軸流圧縮機の要素効率向上を目標に,動翼の流 れ計測ができる直線翼列を用いて翼端の流れ計測とその環 境構築を行なった.高速運転をする可動壁ではベルトに回転 運動を与える性質上,振動問題を無視することはできなかっ たが,デバイスを設けることにより振動を軽減でき,計測部 で要求する一様な速度分布を再現することができた.また今 回の実験条件において可動壁本体の振動が流れへ及ぼす影 響は見られなかった.そして非接触の流れ計測が可能な LDV を用い,構築した実験環境において翼端間隙内流れを計測で き,その結果,翼端漏れ流れを観測し,翼端漏れ渦と推定さ れる結果を得た.続いて端壁の運動の有無による差異を計測 し,可動壁の影響を考察することができた.

今後は可動壁の更なる高速度運転への対応と、それに伴う 実験条件の多様化、そしてそれによりもたらされる種々の現 象の観測と実験精度の向上を行なう.

文献

- [1] 日本ガスタービン学会, ガスタービン工学,2017.
- [2] 山口信行, "ケーシング・トリートメント," ターボ機械, 第 12 巻, 第 9 号, pp. 558-567, 1984.