1. 緒言

近年,アクチュエータのマイクロ化が進んでいる.その中の 一つに液晶アクチュエータ⁽¹⁾⁽²⁾がある.液晶に電場を印加した 際の液晶分子の回転運動によって発生する流動(背流)を利 用した物体駆動装置である.

従来の液晶アクチュエータは,前進・後退駆動制御を複雑な 電極のパターニングと電場印加領域のスイッチングによって 行っていたためマイクロ化が困難であった⁽³⁾.

本研究では、液晶アクチュエータのマイクロ化に向けて、駆動方向制御手段の簡略化を目指す.すなわち印加電圧のみの 制御で液晶アクチュエータの前進・後退駆動制御を試みる. 図1に電場印加時と電場解放時に発生する背流を示す.パル ス電場の場合、電場印加時と電場解放時の液晶分子の回転運動によって、それぞれ逆方向の背流が発生する.この背流に よって前進と後退を繰り返しながら巨視的には前進駆動する. 前進駆動量が後退駆動量を下回り、巨視的には後退駆動する 電圧波形条件が存在すれば、液晶アクチュエータの駆動方向 制御を電極パターニング無しで行うことが可能となる.そこ で、印加電圧波形をパラメータとした数値シミュレーション を行い、後退駆動を実現する印加電圧波形を見い出し、その 後、前進・後退駆動制御の実験を行う.

Fig.1 Backflow at the time of the imposition and the cessation of electric field

2. 数値計算

2.1 計算方法

平行平板間の液晶に電場を印可した際に誘起される流動と 平板の運動を連立解析することによって、液晶アクチュエー タの駆動シミュレーションを行う.液晶流動の計算には、 Leslie-Ericksen 理論を用いる.速度場およびディレクタ場の支 配方程式を以下に示す.

$$\nabla \cdot \mathbf{v} = \mathbf{0}$$
(1)

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \nabla \cdot \left\{ -\frac{\partial F}{\partial \mathbf{n}} \cdot (\nabla \mathbf{n})^T + \alpha_1 \mathbf{n} \mathbf{n} \mathbf{n} \cdot \mathbf{A} \cdot \mathbf{n} + \alpha_2 \mathbf{n} \mathbf{N} + \alpha_3 \mathbf{N} \mathbf{n} + \alpha_4 \mathbf{A} + \alpha_5 \mathbf{n} \mathbf{n} \cdot \mathbf{A} + \alpha_6 \mathbf{A} \cdot \mathbf{n} \mathbf{n} \right\}$$
(2)

$$\mathbf{0} = \mathbf{n} \times \left\{ \Delta \varepsilon \mathbf{n} \cdot \mathbf{E} \mathbf{E} - \frac{\partial r}{\partial \mathbf{n}} + \nabla \cdot \frac{\partial r}{\partial \nabla \mathbf{n}} + (\alpha_3 - \alpha_2) \mathbf{N} + (\alpha_3 + \alpha_2) \mathbf{A} \cdot \mathbf{n} \right\}$$
(3)

ここで、vは速度ベクトル、 ρ は液晶の密度、pは圧力、 $\alpha_1 \sim \alpha_6$ は Leslie 粘度係数、nは局所的な液晶分子の配向を表す単位ベクトルであるディレクタ、Aは変形速度テンソル、Nは

システム工学群 流体工学研究室 1190068 小坂 昇平

ディレクタ流体の相対角速度ベクトル、A&は誘電率異方性, E は電場ベクトルである.また,F はディレクタ場の歪みに よって生じる自由エネルギ密度である.上部平板の運動方程 式を以下に示す.

$$m\frac{dU}{dt} = \tau_w S - \operatorname{sgn}(U)\mu mg \tag{4}$$

ここで, m は上部平板の質量, U は上部平板の駆動速度, τ_w は液晶が上部平板に及ぼすせん断応力, S は上部平板の面積, μは摩擦係数である.

液晶アクチュエータにパルス波電場を印加した場合,前進 と後退を繰り返しながら前進駆動する.前進駆動量を減少さ せるために,ディレクタの回転速度がパルス波電場を印加し た場合より緩やかになるように電場を印加する必要がある. そこで,後退駆動にはのこぎり波を用いた.計算条件として 用いる印加電圧波形(パルス波およびのこぎり波)を図2に 示す.

図3に計算モデルおよび座標系を示す.配向処理を施した 平板間に液晶を充填し, y軸方向に電場を印加した時の上部 平板の位置の時間変化について解析を行った.ここで,平板 間隔に対して,平板は十分に広いため, y軸方向の1次元モデ ル化を行う.計算条件として平行平板間隔(H=10µm)に最 大電圧値 V=10V,周波数 f=50Hz,デューティ比 D=5%のパル ス波と最大電圧値 V=10V,周波数 f=10~100Hz,デューティ 比 D=5~100%ののこぎり波を印加した場合の数値シミュ レーションを行った.

液晶の物性値には 4-Cyano-4'-pentylbiphenyl(5CB)の値を使用する.

Fig.3 Calculating areaand coordinate system

2.2 計算結果および考察

図4はパルス波(V=10V, f=50Hz, D=5%)およびのこぎり波 (V=10V, f=50Hz, D=80%)を印加した場合の上部平板の位置の 時間変化を示している.定常状態に至った時刻を t= 0 で表し ている.パルス波の場合,平均速度は 113µm/s である.一方 のこぎり波の場合,前進と後退を繰り返しながら巨視的に後 退し平均速度-8.20µm/s である.

図 4 よりのこぎり波はパルス波に比べ前進駆動が抑制され ていることがわかる.これは、電場を緩やかに印加するため x 軸正方向の背流が減少したからだと考えられる.

図 5(a)はのこぎり波(*D* =80%)印加時の平均速度と周波数の 関係,(b) はのこぎり波(*f*=50Hz)印加時の平均速度とデュー ティ比の関係を示している.図 5 (a)より周波数 40Hz で最小 値-8.73µm/s を示す.周波数増加に伴い平均速度は緩やかに増 加し,*f*=110Hz 以上で前進駆動に転じる.図 5(b)では,*D*=5% で77.3µm/s を示し,デューティ比増加に伴い緩やかに減少し, *D*=65%以上で後退駆動に転じ,デューティ比 100%で-19.0µm/s を示す.

図 5(a)より,周波数は極小値を持ち,低周波では平均速度は 減少し,高周波では平均速度は増加していることがわかる. 低周波では周波数が低すぎるため,ディレクタが電場をかけ ていない初期の配向状態に戻りきってしまうため前進駆動の 抑制が減少しているからだと考えられる.高周波では周波数 が高すぎるため,パルス波と同様に急激な電場印加によって x軸正方向の背流が増加したと考えられる.

図 5(b)よりデューティ比の増加とともに平均速度は減少す ることがわかる.これは低デューティ比では、急激に電場印 加するため前進駆動の背流が増加し前進駆動しているからだ と考える.高デューティ比では、緩やかに電場印加するため 前進駆動の背流が減少し後退駆動していると考えられる.

Fig.4 Relationship between frequency in numerical simulation

Fig.5 Effect of parameters on moving velocity of the upper plate

3. 実験

3.1 実験方法

図6に本実験で用いた液晶アクチュエータの概要を示す.2 枚のガラス平板にはITO透明電極膜が成膜され、その上から 液晶分子を配向させるための水平配向膜が成膜されている. この2枚のガラス平板間に平板間隔を一定に保つために微粒 子をスペーサーとして混入した液晶を充填する.上部平板は 駆動するため水滴を介して、上部平板が導線から受ける力が なるべく小さくなるようにして通電させる.作成した液晶セルを顕微鏡に固定し,数値シミュレーションと同様の条件のもとで上部平板の運動を動画撮影する.また,1つのセルに対し10回の測定を行う.

液晶材料は数値シミュレーション同様に、5CB である.

3.2 実験結果および考察

図 7 に上部平板の位置の時間変化を示す. 図の勾配より, 平均速度は-4.71µm/s である. 後退と停止を繰り返しながら巨 視的に後退していることが分かる. 数値シミュレーションの 結果は前進と後退を繰り返しているが,実験では後退と停止 を繰り返している. これは,印加電圧が抑制されたため数値 シミュレーションでは考慮していなかった表面張力の影響が 顕在化し,図4の数値計算の傾向と異なったと考えられる.

Fig.7 Relationship between frequency in experiment

4. 結言

本研究では液晶アクチュエータのマイクロ化に向けて、制 御方法の簡略化を目指し、印加電圧のみの制御で液晶アク チュエータの前進・後退駆動制御を試みた.

数値シミュレーションでは、のこぎり波電圧が印加された 場合、周波数およびデューティ比を変化させることによって 前進・後退駆動が可能であることを明らかにした.

実験では,液晶アクチュエータの前進・後退駆動制御を行った.結果として再現率は低いものの,印加電圧のみの制御で 前進・後退駆動制御を行えることを実証した.

文献

- (1) 蝶野成臣, 辻知宏, "液晶駆動型マイクロアクチュエータの開発(第1報, 流動の発生とそのメカニズム)",日本 機械学会論文集 B 編, Vol. 72(2006), pp.656-661.
- (2) 蝶野成臣, 辻知宏, "液晶駆動型マイクロアクチュエータの開発(第5報, 平板駆動の数値計算)", 日本機械学会 論文集 B 編, Vol. 77(2011), pp.1758-1766.
- (3) 辻知宏, 蝶野成臣, "液晶駆動型マイクロアクチュエータの開発(第6報, 駆動方向制御)", 日本機械学会論文集 B編, Vol. 81(2015), p.14-00627.