衛星画像を用いた10年間の植生変化

1190129 花井 洋昭

高知工科大学 システム工学群 建築・都市デザイン専攻

近年,様々な人工衛星データが無償で容易に入手できるようになった.そこで本研究では,空間分解能や観測波 長帯,バンド数の異なる人工衛星を用いた土地被覆分類から 10 年間の植生変化マップを作成することを目的とし た. Sentinel-2 運用期間は、Sentinel-2 を単独で用いることで精度 90.0%の土地被覆分類が得られた.2009 年度 では,Landsat5 と ALOS (Advanced Land Observing Satellite)の衛星データを融合させて用いることで精度 80.0% 以上の分類結果が得られた.

次に,分類結果をもとに 2009 年度から 2018 年度の植生変化マップを作成し,10 年間の植生変化を確認した.伐 採跡地では,標高によって回復した植生に違いがみられた.伐採跡地は,標高 800m 未満は常緑広葉樹,800m 以上は 落葉広葉樹に回復していた.また,標高 500m では植生回復に 10 年要し,1000m では 18 年以上要することが確認で きた.

Key Words: Sentine1-2, Landsat5, ALOS, 伐採跡地

1. はじめに

近年グローバルな気候変動や人工林の伐採,シカの 食害などによって植生が変化している.そのため人工 衛星による長期的かつ広域的な植生の変化の把握が必 要である.

現在では、様々な地球観測衛星が打ち上がっており、 容易に様々な衛星画像が入手できるようになった(図-1,2). Sentinel-2は、2015年より運用された欧州の地 球観測光学衛星で、可視4バンド、近赤外6バンド、短 波長赤外3バンド合計13バンドの観測波長帯を持 つ.10m分解能を持つため、高精度での土地被覆分類が 期待できる、Landsatは、アメリカ航空宇宙局(NASA)の 地球観測衛星で、1972年から長期にわたって継続観測 が行われている、主な分解能は、30mである、Landsat8 の観測波長帯は可視4バンド、近赤外1バンド、短波長 赤外3バンドである、Landsat5は、Landsat8と比べて 可視、短波長赤外が1バンド少なく、熱赤外に1バンド 持つ、ALOSは、分解能が10mで可視3バンド、近赤外1 バンドの観測波長帯を持つ、ALOSの運用期間は2006年 から2011年である、

そこで本研究では,空間分解能や観測波長帯,バンド 数の異なる人工衛星を用いた土地被覆分類から 10 年 間の植生変化マップを作成することを目的とした.

図-2 人工衛星による観測波長と空間分解能

2. 対象エリア・使用データ

2.1 対象エリア

図-3 に対象エリアの 位置図を示す. 対象エリアは,高知県 中部に位置する大豊町

2.2使用データ

表-1 に本研究で使用した人工衛星画像を示す.使用 衛星画像には雲が含まれている衛星画像もある.

本研究では, 2009 年から 2018 年の 10 年で 6 年度分

の人工衛星画像を4 種類の人工衛星から取得した.植 生の季節変化を考慮し,落葉開始時期,落葉期,着葉期 の3時期を1年度の分類に用いた.

分類に使用したバンドを**表-2**に示す. Sentinel-2は 可視4バンド,近赤外6バンド,短波長赤外3バンド合 計13バンド使用した. Landsat8は,可視4バンド,近赤 外1バンド,短波長赤外3バンド合計8バンド使用し た. Landsat5とALOSは分解能が10mのALOSの可視3 バンドと近赤外1バンド,分解能30mのLandsat5の短 波長赤外2バンドを融合させて合計6バンド使用した. バンド数が少ない状況を補うため, Landsat5とALOSを 融合させる場合は,6時期の衛星画像を用いた. Landsat5とALOSを融合させる場合を, Landsat5&ALOS と表記する.

表-1 使用衛星画像

Sentinel-2			Landsat8			Landsat5&ALOS				
年度	時期	雲(あり:O)	年度	時期	雲(あり:O)	年	度	時期	雲(あり:O)	
2	2018/5/24		2	2016/7/19	0		5	5	2006/11/23	
	0 2018/4/19 O 0 2016/4/30			ands	2009/9/2	0				
8	2017/11/5		6	2015/10/21		2	at	2009/4/11		
2	2017/9/26	0	2	2015/9/19	0	١ğ	7	2009/11/23	0	
0 1 7	2017/4/4			2015/4/30			Į	2009/8/23	0	
	2016/11/5	0	5	2014/11/3	0		0,	2009/4/7		
			2	2014/10/18						
			0	2014/4/25						
			4	2013/11/16	0					

表-2 分類に使用したバンド

分類に用いた人工衛星		Sentinel-2	Landsat8	Landsat5&ALOS
観測波	可視(バンド)	4	4	3 (ALOS)
	近赤外(バンド)	6	1	1(ALOS)
日本	短波長赤外(バンド)	3	3	2(Landsat5)
合計使用バンド数(バンド)		13	8	6

3. 衛星画像の前処理

3.1 幾何補正

衛星データには幾何学的な歪みが含まれており、そのままでは、地図や他の衛星データと重ねることができない、そのため、基準点を物部川流域の橋などに6点 選定し、精度が0.5 ピクセル以内となるように式(a)アフィン変換式¹⁾を用いて補正した.

$$\begin{cases} x = au + bv + c \\ y = du + ev + f \end{cases}$$
(a)

a,b,c,d,e,f: 変換係数 u,v: 変更前座標 x,y: 変更後座標

3.2 輝度値の正規化

本研究では,地形・大気による影響を補正するために 式(b)²⁾より正規化した輝度値に変換する処理を行った.

$$R_{e}(i) = \frac{r_{e}(i)}{\frac{1}{N} \times \sum_{i=1}^{N} r_{e}(i)}$$
(b)

R_e: 正規化反射率 r_e: 反射率 N: 総バンド数 i:バンド番号

4. 機械学習による土地被覆分類

4.1 分類手法

本研究では,土地被覆分類を SVM (Support Vector Machine)という機械学習で行った.分類項目は[落葉広 葉樹]・[常緑広葉樹]・[常緑針葉樹]・[混交林]・[裸 地]・[水域]の6項目で,分類結果を標高ごとに精度検 証した.ALOS 解析研究プロジェクトで提供されている ALOS 土地被覆分類の全体精度は 78.0%³⁾ であるため, 精度が全ての地域で80.0%を超えるまで分類を繰り返 した.分類フローを図-4 に示す.

図-4 分類フロー

4.2 教師データ

機械学習で分類する際には、基準となる各分類項目 における代表的な統計量を求めなければならない.そ の統計量のことを教師データと呼ぶ.垂直的分布に よる植生の分布パターンを考慮するために、三嶺 (2000m),松尾峠(1000m),大倉山(500m),佐岡(200m)の4 つの地域で教師データを取得した.また、教師データは、 分類に用いる衛星画像の雲がないピクセルで取得した. 分類に用いた教師データピクセル数を**表-3**に示す.

教師データの取得は, Sentinel-2の2018年度衛星デ ータをR・G・Bにバンド5・6・7をカラー合成させ, 落 葉開始時期・落葉期・着葉期の3時期の色の変化から 目視で行った.このとき教師データは, 植生の境界より 3ピクセル以上内側から取得した.また, 裸地は伐採に よって植生が大きく変化するため, 2009年度, 2018年 度共に裸地のピクセルを, 教師データとして取得した. 2018年度以外の分類に用いる教師データも, 2018年度 の画像にて, 設置した位置座標を用いて取得した.

表-3 分類に用いた教師データピクセル数

地名						
		三嶺	松尾峠	大倉山	佐岡	 合計教師データ数 (ピクセル数)
標高(m)		2000	1000	500	200	
	落葉広葉樹	200	500	0	0	700
4	常緑広葉樹	0	0	500	500	1000
類	常緑針葉樹	200	500	500	500	1700
項	混交林	200	500	0	0	700
	裸地		200			
	水域		200			

4.3 パラメータ設定

SVM では誤分類をどの程度許容するかを決めるコス トパラメータ C と, 識別境界の複雑さを決める RBF カ ーネルのパラメータ γ を設定する必要がある. 本研究 では, 分割数を任意に決めることのできる層化 k 分割 交差検証を用いたグリッドサーチで, 最適なパラメー タを決定した. kの値は分割間の精度のばらつきが十分 に小さくなった 5 に設定した. 表-4 に各衛星のパラメ ータを示す.

表-4 各衛星のパラメータ

人工衛星	Sentinel-2	Landsat8	Landsat5 & ALOS			
機械学習手法	サポートベクターマシン (SVM)					
パラメータ設定手法	層化k分割交差検証を用いたグリッドサーチ					
kernel	RBF	RBF	RBF			
С	100	100	100			
gamma	0.01	0.1	0.1			

4.4 雲マスク

土地被覆分類を行う際に雲・雲影の部分は,6 つの 分類項目に正確に分類されない.そのため,雲のある 衛星画像の雲と雲影を抽出し,分類結果に雲マスクと して重ねる.雲・雲影の抽出手法は,雲のある衛星画像 からそれぞれ雲・雲影を 200 ピクセルずつ教師データ として取得した.土地被覆分類を行うために,6 項目で 取得した教師データの分類項目を[雲・雲影以外]とし, 雲・雲影の教師データと合わせた.合計 4900 ピクセル の教師データを使用して 1 つの衛星画像ごとに SVM で [雲]・[雲影]・[雲・雲影以外]の 3 分類させた.雲・雲 影として抽出された部分を雲マスクとして分類結果に 重ねた.

4.5 分類結果

分類は Sentinel-2 で 2 年度分, Landsat8 で 3 年度 分, Landsat5&ALOS で 1 年度, 合計で 6 年度分の分類結 果が得られた. 2018 年度と 2009 年度の 2 年度分の分類 結果を図-5 に示す. 2009 年から 2018 年にかけて, 混交 林が減り, 山頂部で裸地が増えた様子が確認できた.

4.6 精度検証

検証データの取得は,Google satellite にて目視で

取得した.また,検証データは教師データと独立した点 とし,標高ごとに三嶺・松尾峠・大倉山・佐岡で各分類 50 ピクセル取得し,精度検証を行った.

2018 年度の松尾峠での精度検証結果を表-5 に示し, 各年度での全体精度を表-6 に示す.

標高 1000m 付近での松尾峠では,植生が入り組んで おり,他の地域と比べて精度は低くなった(表-5).ま た,Landsat8 は分解能が 30m のため,混交林や植生の境 界部分で精度が低くなり,全体精度も低くなっ た.Landsat5&ALOS を用いて分類することで,分類精度 は上がった.

表-5 松尾峠(2018 年度)での精度検証結果

	分類結果							
201	Sentinel-2 8年(松尾峠)	落葉広葉樹	常緑広葉樹	常緑針葉樹	混交林	裸地	合計	Producer's accuracy(%)
	落葉広葉樹	36	2	0	12	0	50	72
埝	常緑広葉樹	0	0	0	0	0	0	0
証	常緑針葉樹	0	0	49	1	0	50	98
点	混交林	2	0	1	47	0	50	94
	裸地	0	0	0	0	0	0	0
	合計	38	2	50	60	0	150	
User	's accuracy(%)	94.7	0	98	78.3	0		88

表-6 各年度の標高別の全体精度結果

人工衛星	Sentinel-2			Landsat	Landsat5&ALOS		
分類年度	2018	2017	2016	2015	2014	2009	
	三嶺	94	95.3	79.3	80.4	82	86.7
△仕 炷卉(4/)	松尾峠	88	87.3	78	80.7	80.7	82
土冲相反(%)	大倉山	99	99	81	81	85	89
	佐岡	98	98	82	84.8	83	88

5. 植生変化マップの作成

5.1 境界マスク

6 年度分の分類結果を得たが, Landsat8 のみを使用 した分類結果の分解能は 30m である.そこで植生変化 マップは, 10m 分解能で分類結果が得られている 2018 年度・2017 年度・2009 年度の3 年度を用いた.そこで まず, [3 年度で変化]・[2018 年度から変化]・[2017 年 度から変化]・[3 年度で変化]・[2017 年度だけ変化]の 5 パターンで植生変化パターン図を作成した.

各衛星画像は,幾何補正を行ったが,衛星画像のピク セル位置は画像取得時ごとにわずかなズレが生じてい る.そのズレが植生変化として表れるため,植生の境界 付近は,誤差が発生する.

今回は,植生の境界の位置ズレを考慮し,マスク処理 を行った.植生変化パターン図を縦3ピクセル,横3ピ クセルずつで区切り,9ピクセル内に,[3年度で変化な し]のピクセルがいつ含まれるかで境界マスクを考え た.今回は,9ピクセル内に[3年度で変化なし]のピク セルが6ピクセル以下の時を境界とみなした.ま た,[3年度で変化した]と[2017年度だけ変化した]も 境界とした.

5.2 植生変化マップによる変化抽出

[3年度で変化なし]・[2018年度から変化]・[2017年 度から変化]の3パターンに雲マスク・境界マスク処理 をし,植生変化マップを作成した(図-6).植生変化マッ プから植生が変化している様子が確認できた.例えば, 大豊町立川の周辺では混交林から常緑針葉樹に変化し ていることが判った.また,松尾峠周辺では,人工林が 伐採され裸地になった様子もみられた.

図-6 大豊町立川における植生変化マップ

6. 植生変化マップを利用した植生回復の状況

6.1 伐採跡地の抽出

まず, 伐採跡地の抽出を行った. 抽出方法は 2009 年 の分類が裸地で, 2018 年度の分類で植生が回復してい る部分を抽出した. そこから目視で伐採跡地を 20 箇所 抽出した. 抽出した伐採跡地を図-7 に示す.

伐採時期は、Landsat5の原画像をもとに目視で判断し、植生回復は分類結果から得た.

図-7 伐採跡地

6.2 伐採跡地の地理的特徴

伐採跡地の植生回復状況の特性を知るために,国土 数値情報から標高・平均傾斜角度・土壌・地質・年降 水量・年平均気温・年平均全天日射量の属性を付与した.

植生回復状況と平均傾斜角度・土壌・年降水量・ 年平均全天日射量の目立った相関は確認できなかっ た.しかし,標高・回復後植生・森林回復期間・地質を散 布図で表すと,標高と回復状況で相関がみられた(図-8).標高 800m 付近で回復した植生に違いがあることが 判った.また,標高が高くなるにつれて森林回復に時間 を要する.標高が 800m を超え,10 年未満で森林回復し た 3 箇所の伐採地は,いずれも表面地質が千枚岩であ った.

一方,22 年以上たっても植生の回復が見られない伐 採跡地もいくつかみられた.それらの伐採跡地は図-7 の a, b, c で, いずれも標高 1000m を超える山岳部にあ る.

7. 考察

今回,特徴の異なる複数の衛星を用いて機械学習に より土地被覆分類を試みた.その結果,Sentinel-2によ る土地被覆分類は 90.0%の精度が得られ た.Landsat5&ALOS を使用した分類も Sentinel-2 には 劣るが 80.0%以上の精度が得られた.Sentinel-2 の運 用期間外の分類は,Landdst5&ALOS を用いて行うこと で,10年間の植生変化マップを作成した.雲の抽出は, 教師データを用いた機械学習で行った.今後は,雲抽出 を自動化で行うために,熱赤外バンドの輝度値で雲を 抽出する必要がある.

伐採跡地での植生回復状況について,標高と森林回 復期間の回帰分析を行った.標高 500m では,植生回復 に10年要し,標高1000mでは回復されない箇所もあり, 回復したとしても18年要していることが確認できた.

参考文献

- 1) 高木方隆 国土を測る技術の基礎
- 2) 鈴木滉一 衛星画像を用いた中山間地域の土地被 覆変化抽出 2017 年度
- 宇宙航空研究開発機構(JAXA)地球観測研究セン ター・筑波大学との共同研究 高解像度土地利用 土地被覆図の作成