転がり軸受の運転状態評価のための超音波・渦流複合探触子の開発

システム工学群

極限ナノプロセス・トライボロジー研究室 1190145 藤本 悠希

1. 緒言

各種機械装置に用いられる転がり軸受の潤滑面は、低コス ト化・高効率化のために、微量な低粘度油により潤滑される 傾向にある.しかし、運転条件によっては金属接触や焼き付 きの危険性もある.軸受内部では玉の回転により、玉の入口 側と出口側の潤滑状態が双方で異なり、出口側で油膜破断や 気泡が含まれる可能性が高くなる.高速回転になるにつれ、 前の玉の出口側の油膜破断が次の玉の入口側にも広がり、か き出された油が戻らぬ内に次の玉が来る事があれば、外輪と 玉の間で金属接触が起こる原因となる.

そのような状況下での,転がり軸受の安全な運転を保つた めには正確で時間遅れのない運転状態評価が必須となって くる.転がり軸受における運転状態の評価法の一つとして超 音波法が挙げられるが,油膜内に存在する気泡の影響を受け るため正確な油膜厚さの測定は難しい.そこで気泡や油膜破 断の影響を受けない運転状態評価法が求められている.

本研究の目的は,超音波法と気泡・油膜破断の影響を受け ないとされる渦流法,二つの測定法を複合させ,転がり軸受 の運転状態評価が可能か検討を行う.この複合探触子では油 膜厚さと油膜破断の独立した評価が可能になると考えられ る.ここでは,それら探触子を複合することによる,膜厚測 定への影響を中心に検討した.

測定原理と基礎特性

2.1 超音波探傷法

図1に超音波法による潤滑状態測定の原理を示す.本測定 法において,軸受外輪外周に設置した探触子から送信される 超音波は,外輪と玉の境界で反射波と透過波に分かれる.透 過波は油膜内で多重反射し,先の境界で反射した波と干渉し てエコー高さhの波として探傷器上で観測される.エコー高 さhは油膜形成状態によって増減し,油膜内に気泡を含むと その境界でも反射するためエコー高さは連続油膜の場合と 異なってくる.ここでは乾燥状態でのエコー高さ h_0 で規格化 したエコー高さ比 $H = h/h_0$ によって評価を行う.

2.2 渦流探傷法

図2の左に過流探傷法での膜厚測定の原理を示す.本測定 法では軸受外輪外周に設置した探触子がつくる磁束が,軸受 外輪を通過し,玉側に漏れた磁束を利用する.玉が漏れ磁束 場に近づくと,玉側に渦電流が発生し,それに伴って誘起さ れる二次的な磁束により,コイル部のインダクタンス L_2 が変 化して,ブリッジ回路の a,b 端子間に電圧V(電圧差 Δ V)が現 れる. L_2 は,漏れ磁束の影響範囲(面積)中での玉と外輪との 平均隙間に依存するため,電圧V(電圧差 Δ V)により油膜厚さ の測定が可能になる.

図2右に示された実験装置を用いて行った渦流探傷法に よる膜厚測定結果を図3に示す.SUJ2 平板と同鋼球との間 の隙間が狭くなると電圧Vは大きくなる(左図).また,軸受 外輪を模する SUJ2 の板厚が厚くなるほど出力電圧が小さく なり、より低周波側で励起周波数のピークを迎える(右図). 図4には、渦流探触子と SUJ2 薄板(0.5mm)との間に、絶 縁体のアクリル(PMMA:厚さ 1mm)を介在させた場合の結 果(右図)を、介在物のない場合の結果(左図)と並べて示して ある. PMMA の介在の有無による傾向の違いは、ほとんど 無いものの、PMMA 介在で感度は低くなる. PMMA を取り 除いた場合でも結果(右図)は同じと考えられるので、その空 隙に冷却剤を流すことでの探触子温度の上昇防止が可能と なる.

Fig. 1 Measurement principle of ultrasonic testing

Fig. 3 Film thickness measurement by eddy current method

3. 複合化の可能性

前述のように超音波法(膜厚と油膜破断に影響される)と 渦流法(膜厚のみに反応)を併用することで,膜厚と油膜破断 状況を個別に評価できる可能性がある.ただ,超音波の振動 素子ならびに導線には瞬間的(数 ns)に 100~400V の電圧が 印加されるため,渦流素子のインダクタンスに影響が現れる 可能性がある.また,その逆に渦流素子のコイルへの通電が, 超音波観測結果に影響を及ぼす懸念もある.

図5左側に,試作した複合探触子の模式図を示した.励振 用と制御用コイルに挟まれるように φ 3mm 径の超音波探触 子が配置されている複合探触子を,図6の膜厚可変装置用の SUJ2 板(厚さ T=2~5mm)上に設置した.板裏面と相手面 (SUJ2)の間の膜厚を変化させた時のエコー高さ比 H と出力 電圧 V の関係を図5左側に示す.図から明らかなように,複 合探触子を作動させた場合の特性は,各探触子を単独で用い た場合と一致しており,複合化の影響は無い事が明らかにな った.

Fig. 5 Influence of composite on film thickness measurement

Fig. 6 Experiment equipment

4. 複合探触子の基礎特性

図7に渦流法での結果を示す.図3と同様,各周波数での 出力電圧 V は, 膜厚 S に比例して増加し,感度は板厚に応 じてある周波数でピークを示している.その周波数のピーク が厚板で低下する傾向も図3と同じである.

一方,図8には,超音波法での膜厚測定結果を示してある. 使用した探触子(5MHz)の鋼中波長が約1~2mmであり,薄 板の場合,数波(周期)の波を有するパルス波ではパルス電圧 印加後の波が減衰しきらない所に薄板裏面からの反射波が 重畳される.そのため,薄膜でのHはあまり低下しないが, 厚板(例えば T=5mm)になると,減衰波と反射波が分離して くるため,膜厚に対する感度は上昇する.その板厚での渦流 法の結果は図7右側に示したように(T=5mm),充分な感度を 有している.

Fig. 7 Film thickness measurement by eddy current method

Fig. 8 Film thickness measurement by ultrasonic method

5. 結言

超音波探触子と渦流探触子を複合させても,互いの膜厚測 定結果に影響を及ぼさないことが確認された.

6. 参考文献

 竹内彰敏, "転がり軸受面での供給不足と枯渇過程の 超音波観測",日本機械学会論文集,(2012)