100GHz帯域超高速ゾルゲル・ポリマ光変調器のための電極最適化の研究

1190155 港 晴輝 (榎波研究室) (指導教員 榎波 康文 教授)

1. 目的

光変調器は電位信号を光信号に変換する長距離高速光ファ イバ通信に必要不可欠なデバイスで従来はニオブ酸リチウム (LN)を用いて広く実用化されてきた.しかしながら駆動電圧 が 5V と高く LN 光変調器の帯域幅は 40GHz 以下で小型化お よび集積化に制限があり幹線系長距離光通信用の光変調器以 外の用途が限定されている。またシリコン等の半導体光変調 器の帯域幅は 30GHz 以下で光損失が高いことから電極長を 短縮する必要があり消費電力が高い.一方電気光学(EO)ポ リマは絶縁体で薄膜化が容易な特徴を有し屈折率分散は半導 体材料の 1/30 以下であるため位相整合が容易である. [1] 位 相整合条件が優れていればミリ波が光波に遅延せずに伝搬し 帯域幅拡大が容易となる。2018年に EO ポリマを用いた強度 光変調器により榎波らは 130GHz 超広帯域光変調を可能とす る報告を行った[2] 本研究はゾルゲル・ポリマ光変調器のミ リ波進行波型電極のモデル化と解析を行い、解析結果により 最適化した電極を光変調器に用いて作製し 200GHz を越える 超広帯域ポリマ光変調器を実証することを目的とする。

2. 研究内容

高周波電磁界解析ソフト HFSS を用いて直線マイクロスト リップ線路のモデルを作製し電極構造、電極間隔、上部電極 幅、入力パッド構造を変えた時の S パラメータの変化を解析 した.電極バッドを用いたゾルゲル・ポリマ光変調器のモデ ルを作製し,入力ポートの位置に対する S パラメータ変化を 解析した.また実際の光変調器プロセスとして下部電極とゾ ルゲルクラッド層および EO ポリマ光導波路のスピンコート とパターンニングを行った.さらに RIE ドライエッチングま たはウエットエッチングによる VIA ホール作製及び VIA の 金メッキを行った。

3. 結果

3.1 高周波電磁界解析ソフトを用いたミリ波進行波解析

実験により得た光導波路を構成する各材料の誘電率測定結 果を用いて上部電極幅を変化させた時の周波数 100GHz まで のSパラメータのシミュレーション結果を図1に示す. 電極 幅増加により S11 である反射パラメータが減少し S21 伝搬パ ラメータは上部電極幅 15mu, 17um に対して減衰が低く 20um 電極幅が最適幅であることを求めた.

図 1. 各上部電極幅に対する進行及び反射 S パラメータの計 算結果

マイクロストリップ線入力パットへの電磁界入力位置を変 化させた時のSパラメータの解析結果を図2に示す.入力ポ ート位置をパッド内側限界までに変化させた場合 55GHz 付 近で S11 が S21 より大きくなりインピーダンス整合が十分に できなくなることが解った。入力パッド端面から 100um の 位置に入力ポート接続すると 90GHz 付近まで S11 は低く入 力ポート位置はパッド端面から 100um 内側が最適であるこ とが解った。

図 2. S パラメータのミリ波と入力パッドの接続位置に対す る依存性

3.2 実験デバイス作製

金メッキによる下部電極作製、ゾルゲルシリカ光導波路作 製及びEOポリマコア作製を行った。その後下部電極と上部電 極パッドを導通させるためゾルゲルシリカに VIA を形成し VIA 金メッキを行った。ゾルゲルシリカクラッド部分に作製 した VIA の作製結果を図3に示す。ウエットエッチングで8um のゾルゲル層に VIAホール開けた際の顕微鏡画像を図3(a)に 示す。その後 VIA を金メッキして下部電極と上部電極を導通 させる。この際に行った金メッキ後の顕微鏡画像を図3(b)に 示す。VIA をエッチング完了後顕微鏡により VIA 内部色がゾ ルゲルシリカが存在する場合とエッチング後で変化すること を利用してゾルゲルのエッチングが完了したことを確認した。

図 3. ゾルゲルシリカクラッドに作製した下部電極と上部入 カパッドを接続するための VIA 作製結果 (a) VIA 金メッキ 前(b) VIA 金メッキ後

4. まとめ

HFSSで作製した光変調器モデルの解析結果から上部電極幅 の最適値 20um を得た。入力プローブを入力パッド端面から 100umの位置に接続し S11 を最小化し, S21 を最高値とした。 光変調器下部電極パターニング、金メッキ作製、ゾルゲル下 部・サイド・上部クラッド作製、E0 ポリマコア作製を行った. エッチングによる VIA ホール及び VIA 金メッキを完了した。 今後行う上部電極作製とネットワークアナライザによる帯域 幅測定に必要な電極最適化とデバイス作製を完了した。

5. 参考文献

[1] 榎波康文, "電気光学ポリマー変調器"高分子, 59 巻,5 月 号, pp.317-320, 2010 年

[2] Y. Enami, A. Seki, S. Masuda, J. Luo, and A. K-Y. Jen, Journal of Lightwave Technology, 36, 4186, 2018.