Measurement of Film Thickness by using Composite Probe of Ultrasonic and Eddy Current

知能機械システム工学コース

極限ナノプロセス・トライボロジー研究室 1215015 田島 和弥

1. 緒言

斜板ポンプの摺動部においてその摺動部は軸の回転と共 に、ピストンが出し入れを行い、ポンプの作用をする.しか し、斜板ポンプの小型化・高速化・高圧化により、ピストン・ シューと斜板との間の潤滑膜が過酷な状態に置かれ、ときに は油膜破断が発生する危険性を指摘されている.このような 油膜破断を含む潤滑状態を正確に把握できないと高効率な ポンプの開発が困難となる.そこで、摺動部の潤滑状態の評 価ができる探触子が必要とされる.

これまで、摺動部の膜厚と潤滑状態の測定には超音波探触 子を用いてきたが、超音波は膜厚と気泡の影響を両方受けて しまい、気泡の含有により膜厚の測定が困難となる.そこで、 油膜破断に影響されずに膜厚測定が可能な渦流法を併用し て、膜厚と潤滑状態の同時測定を行った.

Fig.1 Lubrication State at Piston Shoe of Swash Plate Pump

2. 測定理論

2.1 超音波法について

図2に超音波を用いた玉軸受外周からの油膜測定の模式図 を示す.超音波法では、物質に超音波を透過させて、界面で の反射波と油中で多重反射を起こす波との合成波の振幅を エコー高さhとして測定する.hは油膜状態により変化する. そこで、乾燥状態のエコー高さ h_0 で規格化したエコー高さ比 $H=h/h_0$ を定義する.Hは膜厚Sと音響インピーダンスZの関 数で表される.音響インピーダンスは各物質の密度 ρ と各物 質内での音速cの積で定義される.

他方,図3は気泡を含んだ状況での $H \ge S \ge 0$ 関係をグラフ化したものである. 超音波の照射領域に対する油膜破断領域の割合を油膜破断率 $\alpha \ge c$ 定義し, $\alpha \ge c$ 変化させて関係をとると,グラフのように, $\alpha \ge c$ とに異なる傾向が表れていることから,もし測定時点での膜厚が分かれば,エコー高さ比を読み取ることで油膜破断率 $\alpha \ge t$ 推定できる.

2.2 渦流探傷法について

図4に玉軸受を測定する際の渦流探傷法の測定原理を示す. コイルに発生する漏れ磁束により玉側に渦電流が発生する. このときに相手金属に発生する二次的な磁束により探傷用 のコイルでインダクタンス変化が発生し,同時にブリッジ回 路に電源電圧とは異なる電圧 V が発生する.コイルのインダ クタンスは漏れ磁束の影響範囲中での玉と外輪との隙間に 依存する.また,探触子取付部の下に存在する玉が磁性を持 っている場合,潤滑油は玉に比べてはるかに磁性が低いので, 玉の磁性の影響のみを受ける.このため,渦流探傷法では軸 受内部の介在物質によらず,安定して軸受に存在する隙間を 測定できる.

渦流探傷機のブリッジ回路の出力電圧 Vは, 探傷用コイル 中心軸上における,相手金属面の磁界の強さに依存すると考 えられる.このコイル軸上での磁界の強さにおいて,ビオサ バールの法則に従い,相手面との距離 S との関係を求めると 図 5 のようになる.ただしここでは,コイル端での磁界の強 さで規格化し,さらに,コイル端面に相手金属が接触する場 合(S=0)に0となるよう標準化した.図 5 を見ると,コイルの 径によって磁界の強さ H_nが S に対し,線形的な変化を示す 範囲が異なることが分かる.このことから,探触子のサイズ によっては測定に最適な板厚が異なったり,コイルの径が同 一の探触子でも、コイルの巻き数によって励起周波数のピー クが異なってくるなど,渦流探傷法による膜厚測定は不確定 な要素が多く残っている.

Fig.4 Eddy Current Testing

Fig.5 Biot-Savart Law

3. 実験装置

図6左側に示すように、渦流探触子の間に超音波探触子を 挿入し、SUJ2の金属板に取り付けて、金属片を取り付けた マイクロメータヘッドで膜厚Sを変化させながら、エコー高 さと電圧差の変化を取った.板と金属片の間には十分な量の 油を供給した.実験前に、超音波探触子の有無に対する渦流 探触子への影響と渦流探触子の有無に対する超音波探触子 への影響をとり、図6右側のようにグラフ化した.グラフに 示すとおり、渦流探触子、超音波探触子ともにそれぞれの探 触子からの影響を受けることなく安定して測定できること を確認した.SUJ2は2mm~5mmの間で板厚を変化させて、 渦流探傷において各板厚の励起周波数のピークを取り、板厚 の違いによる傾向の違いを読み取った.

Fig.6 Overview of Composite Probe

4. 基礎特性

渦流探触子について,図7は0~50μmの間で膜厚を変化 させた時の各板厚における渦流探触子の感度のグラフであ る.グラフから,膜厚変化に応じた電圧差の変化を確認でき た.また,板厚が増すにつれて励起周波数のピーク値が減少 している様子が読み取れる.

一方,超音波探触子について,図7に各板厚におけるエコ ー高さ比と膜厚の関係を示す.膜厚の薄い領域では,超音波 の透過量が増えることで,エコー高さ比が下がっていること がグラフでも確認できる.また,板厚が増すと,エコー高さ 比の変動も大きくなることが確認できた.これは,板厚が増 すことで,探触子の相手面での反射波による干渉が無くなる ためであると考えられる.

Fig.7 Measurement of Film Thickness by Eddy Current Probe

5. 結言

渦流・超音波複合探触子を用いた膜厚測定において渦流探 触子と超音波探触子を隣接させても、互いに影響を与えるこ となく測定できることが確認された.同時測定において、超 音波、渦流ともに従来の研究で見られた傾向を確認すること ができた.

6. 参考文献

(1) 竹内彰敏, "転がり軸受面での供給不足と枯渇過程の超 音波観測",日本機械学会論文集,(2012)