Measurements of elasticity of the molecular orientation field for the purpose of developing liquid crystal actuators

知能機械システム工学コース

流体工学研究室 1215031 水野 貴斗

この実験では、液晶に電場を与えた時のディレクタの駆動 の様子を透過光強度の変化を用いて測定する.

シミュレーションにおいては、式(1)、(2)を用いて、平行平 板間に電場を与えた時の1次元計算を行い、電場の強さと液 晶分子の角度の関係を求めることができる.次にその角度と 式(3)を用いることで、出射光の偏光状態を求めることができ る.これらの結果は、図2に示すシグモイド関数のような形 を得ることができる.

Brightness

Fig. 2 Sigmoid function

3. 結果および考察

以下の図 3 に実験とシミュレーションで得られた結果を 示す.ただし、この時、縦軸の透過光強度 I は、式(4)のよう に定義する.

透過光強度
$$I = \frac{各電圧印加時の透過光強度 I_v}{電圧無印加時の透過光強度 I_0}$$
 (4)

実験値は 0.9V 付近で下降し,2.0V 付近から定常状態になる.計算値は,0.5V 付近で 1.4V 付近から定常状態になる. 実験とシミュレーションを比べると,液晶の駆動電圧に差が

1. 緒言

液晶の力学的応用を目指した研究として液晶アクチュエ ータが先行研究によって提案された⁽¹⁾.液晶アクチュエータ は,電場を与えることで発生する液晶の流動を利用して物体 を駆動させ,超小型化が可能であるというメリットを持つ. そのため, MEMS, 医療分野での活躍が期待できる.

現在,液晶アクチュエータは実用化に至っていない.要因 は,液晶アクチュエータの性能は駆動源である液晶材料の力 学特性に大きく依存するにもかかわらず,アクチュエータに 最適な液晶材料に関する知見が皆無なためである.そのため には,10万種類以上の液晶材料の中から力学特性に優れた材 料を選定するか,新規液晶材料を開発する必要がある.

しかし,液晶の力学特性に関する研究はほとんど行われて いない.また,現在存在する液晶の力学特性の測定方法は, 測定自体が非常に困難かつ長い測定時間を必要とする.今後, 多種の液晶材料の力学特性を調べるためには,簡便かつ短時 間であらゆる液晶材料に適用可能な測定方法が必要となる. そこで,本研究では実験とシミュレーションを併用した液晶 の分子場弾性定数の簡便な測定方法の確立を目指す.

2. 実験および計算方法

本研究で用いた支配方程式を以下に示す.

・フランクの自由エネルギー式

$$F = \frac{1}{2}K_1(\nabla \cdot \mathbf{n})^2 + \frac{1}{2}K_2(\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + \frac{1}{2}K_3|\mathbf{n} \times \nabla \times \mathbf{n}|^2$$
(1)

·角運動方程式

$$\mathbf{0} = \mathbf{n} \times \left(\frac{\partial F}{\partial \mathbf{n}} - \nabla \cdot \frac{\partial F}{\partial \nabla \mathbf{n}}\right)$$
(2)

・出射光のジョーンズベクトル

$$\begin{bmatrix} \boldsymbol{E}'_{\boldsymbol{X}} \\ \boldsymbol{E}'_{\boldsymbol{Y}} \end{bmatrix} = R_{(\psi_A)} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} R_{(\boldsymbol{\cdot}\psi_A)} R_{(\psi_i)} J_{TN} R_{(\boldsymbol{\cdot}\psi_i)} \begin{bmatrix} \cos\psi_P \\ \sin\psi_P \end{bmatrix}$$
(3)

このとき, F は液晶分子場弾性エネルギーである. K1, K2, K3 は液晶の弾性定数のことをいい,それぞれ広がり変形,捻 じれ変形,曲がり変形の3種類となる.nはディレクタと呼 ばれる液晶分子の巨視的な配向方向を表す.E'x,E'yはそれ ぞれ液晶セルを通過する異常光,常光である.Rは回転行列, JrwはTN(Twisted Nematic)セルのジョーンズベクトルを表す.

液晶の弾性定数を測定することは,式(1)の3つの定数を求 めることである.図1にはTN配向セルを用いた実験装置の 概略を示す.TN配向とは,液晶セルの配向パターンの1つ である.ガラス平板の表面にラビングと呼ばれる配向処理を 行い,上下の平板の角度を90°ずらすことで,それに伴って 液晶分子も上下で捻じれた配向方向になる.この時,偏光板 の方向はラビング方向と同方向になるように設置する. 生じていることがわかる. 原因としては,実験における実験 装置や液晶材料そのものの抵抗によって,シミュレーション と比べて液晶にかかる実質電圧に差が生じていると考えら れる.

$$y = \frac{c}{1 + e^{-a(x-b)}}$$
(5)

式(5)に係数 a, b, c を用いたシグモイド関数を定義する. 2 つの結果をシグモイド関数に近似して評価を行う.この関数の形状は3 つの係数のみに依存するため,係数が全て等しい場合同じ関数であると言える.また,その時の入力値 *K*₁, *K*₂, *K*₃がその液晶材料の弾性定数であることがわかる.

図3の近似関数を図4に示す.図4より液晶に電場を与え た時の透過光強度の変化をシグモイド関数での近似が可能 であるということがわかった.

次に、入力値 K₁, K₃ を変化させたときの近似関数のグラフをそれぞれ図5、図6に示す.図5のグラフは弾性定数 K₁を 0.5 倍、1.5 倍した時の透過光強度の値の近似関数を表す. 0.5 K₁の時, K₁の時より駆動電圧が 0.3V 程度小さくなった. 1.5 K₁の時, 閾値電圧は近い値となったが、定常値までの傾 きが K の時に比べて緩やかになった.これは、弾性定数 K₁ が大きくなるほ液晶分子が立ち上がろうとする力の逆の力 が働くからだと考えられる.図6の K₃の場合も同様に、弾 性定数が大きくなるほど緩やかに立ち上がることがわかる. つまり、K₁と K₃では、K₁の係数のほうが分子の駆動に大き く効いてくることが分かる.

従って、これらの結果より、弾性定数 K の値を変化させる ことによって、シグモイド関数のグラフを変化させることが 可能である. 今後、この測定方法によって、液晶の弾性定数 を求めることができると考えられる.

Fig. 3 Comparison of experiments and simulations

Fig. 4 Sigmoid function approximation

Fig. 5 K1 value change

Fig. 6 K3 value change

1. 結言

液晶に電場を与えた時の液晶分子の駆動の様子を透過光 強度の変化を用いて,実験とシミュレーションの両方で求 め,シグモイド関数によって近似することができた.

また,シミュレーションにおける入力値 K₁, K₂, K₃を変 化させることで,近似関数を変化させることができた.この ことにより,図7のような実験とシミュレーションを併用し た液晶の弾性定数の測定方法は有効であると言える.

Fig. 7 Calculation of Elastic constants

文献

- (1) 蝶野成臣・辻知宏,"液晶駆動型マイクロアクチェエー タの開発(第1報,流動の発生とそのメカニズム)",日 本機械学会論文集 B 編, Vol.72, (2006-3), pp656-661
- (2) 『液晶科学実験入門』日本液晶学会編 シグマ出版
- (3) 『液晶便覧』液晶便覧編集委員会編 丸善出版