ネマティック液晶の平行円板間せん断流れの数値シミュレーション

システム工学群

流体工学研究室 1200028 岩城 凌真

1. 緒言

近年 MEMS に注目が集まっている中で,液晶の力学的性質 を利用したアクチュエータの研究が進められている.液晶ア クチュエータは,複雑な機構を必要としないため小型化が容 易である.

液晶を用いたアクチュエータの一つとして,液晶平板アク チュエータがある.液晶平板アクチュエータの駆動原理は, 平行平板間に満たした液晶材料に電場をかけることで,背流 と呼ばれる液晶流動を発生させ,その際に平板壁面にかかる せん断応力により平板が動くことによる.したがって,液晶 アクチュエータの駆動特性を明らかにするうえで粘度は重要 な物性値であるといえる.

液晶は、流れ方向に対する分子の方向によって粘度が変化 する.液晶の粘度は回転粘度計を使用し計測しており、回転 粘度計における平行円板間の分子配向状態を明らかにするこ とは粘度測定において重要である.しかし、粘度測定中の液 晶の配向方向を計測することは容易ではない.

そのため、本研究では平行円板間での液晶の配向状態の可 視化を試みる.現在液晶アクチュエータの研究で主に使われ ているネマティック液晶を想定し、平行円板間にせん断流れ と電場をかけた状態での数値シミュレーションを行う.

2. 基礎式および計算方法

ネマティック液晶の流れを表す基礎式として、ネマティック液晶の流動解析に広く使用されている Leslie-Ericksen 理論 を用いている.以下の式は連続の式,運動方程式,角運動方 程式,構成方程式である.

$$\nabla \cdot \mathbf{v} = 0 \tag{1}$$

$$\rho\left\{\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\cdot\nabla)\mathbf{v}\right\} = \left(\varepsilon_{\perp}\mathbf{E} + \Delta\varepsilon\mathbf{n}\cdot\mathbf{E}\mathbf{n}\right)\cdot\nabla\mathbf{E} - \nabla p + \nabla\cdot\boldsymbol{\tau}$$
(2)

$$\mathbf{n} \times \left\{ \frac{\partial F}{\partial \mathbf{n}} - \nabla \left(\frac{\partial F}{\partial \nabla \mathbf{n}} \right) - \Delta \varepsilon \mathbf{n} \cdot \mathbf{EE} + (\alpha_3 - \alpha_2) \mathbf{N} + (\alpha_3 + \alpha_2) \mathbf{A} \cdot \mathbf{n} \right\} = \mathbf{0}$$
(3)

$$\boldsymbol{\tau} = \alpha_1 \mathbf{n} \mathbf{n} \mathbf{n} \cdot \mathbf{A} \cdot \mathbf{n} + \alpha_2 \mathbf{n} \mathbf{N} + \alpha_3 \mathbf{N} \mathbf{n} + \alpha_4 \mathbf{A} + \alpha_5 \mathbf{n} \mathbf{n} \cdot \mathbf{A} + \alpha_6 \mathbf{A} \cdot \mathbf{n} \mathbf{n} \\ - \frac{\partial F}{\partial \nabla \mathbf{n}} \cdot (\nabla \mathbf{n})^T$$
(4)

ここで**v**は速度ベクトル, ρ は流体の密度,pは圧力,**t**は 偏差応力テンソル,**E**は電場ベクトル, $\alpha_1 \sim \alpha_6$ は Leslie 粘性係 数,**n** は液晶分子の平均的方向を意味するディレクタを表す 単位ベクトル, $\Delta \epsilon = \epsilon_{\parallel} \cdot \epsilon_{\perp}$ は誘電率の異方性, ϵ_{\perp} および ϵ_{\parallel} はそ れぞれディレクタに垂直,および平行方向の誘電率,**A** およ び**N**はそれぞれ変形速度テンソルおよびディレクタと流体と の相対角速度ベクトルである.*F* はディレクタ場の空間歪み による自由エネルギー密度であり,

$$2F = K_1 (\nabla \cdot \mathbf{n})^2 + K_2 (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + K_3 |\mathbf{n} \times \nabla \times \mathbf{n}|^2$$
(5)

と表される.ここで K_1 , K_2 , K_3 , はそれぞれディレクタの空間的広がり変形,ねじれ変形,曲がり変形を表す弾性定数である.以上の式の離散化には中心差分法を使用,初期条件は全ての液晶のディレクタは垂直配向であるとし,平行円板壁面は常に垂直配向で固定している.

数値シミュレーションによる,誘電率,Leslie 粘性係数,弾 性定数の物性値は、4-Cyano-4'-pentylbiphenyl (5CB),4-Cyano-4'-*n*-octylbiphenyl (8CB)であり,表1は5CB,8CBの粘性係数, 弾性率である.これらはある温度帯でネマティック液晶状態 をとるもので,液晶アクチュエータで使用が想定されている. 計算範囲は図1のように平行円板間の断面を想定しており, *r*=30mm,*z*=0.5mmの条件は実際に使用している回転粘度計の 円板半径,円板間のギャップに合わせている.

r方向, z方向の分割数をそれぞれ mr, mz とし, 格子数を mr×mzとして表している. また, 今回計算結果は格子数を 8CB は2400×40, 5CB は1200×20, 時間刻み幅は 5CB, 8CB 共に $dt=1.0\times10^{-7}$ とし, せん断流れγと印加電圧Vはそれぞれ条件を 変え入力, 液晶分子のディレクタを示したベクトルと応力を 出力している.

Fig.1 Calculation range diagram of parallel plate type

Table.1 Material constants of 5CB and 8CB

	5CB	8CB
	Leslie Viscpsities	[Pa • s]
α_1	0.0×10^{-3}	48.27×10^{-2}
α_2	-86.0×10^{-3}	-7.192×10^{-2}
α_3	-4.0×10^{-3}	4.342×10^{-2}
α_4	89.0×10^{-3}	5.859×10^{-2}
α_5	59.0×10^{-3}	6.353×10^{-2}
α_6	-31.0×10^{-3}	3.502×10^{-2}
Elastic constants [N]		
K_1	6.37×10^{-12}	1.461×10^{-11}
K_2	3.81×10^{-12}	0.705×10^{-11}
K_3	8.6×10^{-12}	1.94×10^{-11}

計算結果と考察

3.1 配向方向の可視化

数値シミュレーションで各条件でのディレクタを求めた. ここから,格子点ごとのディレクタの z 成分をカラーバーで 表示した. 図2は使用する液晶が8CB, せん断速度γ=5, V=0, 図3は使用する液晶が8CB, せん断速度y=10, V=0, 図4は 使用する液晶が 5CB, せん断速度γ=10, V=0での液晶ディレ クタの z 成分の大小を可視化したものであり, 経過時間ごと に並べて表示している.図5はディレクタのz成分と色彩と の関係である. 図 2,3は 8CBの z 方向ディレクタを示して おり,液晶はz方向に回転していることが分かる.これは8CB がタンブリング液晶であることが関係している. ネマティッ ク液晶は、アライニング液晶とタンブリング液晶に大別され、 前者は分子の平均配向方向が流れ方向に対して微小角を保ち, 後者は流れ方向に対して回転し続ける.判別は構造式中の6 つの Leslie 粘性係数のうち α_3 の符号で分かり、表1にも記載 しているが、5CB は $\alpha_3 < 0$ よりアライニング、8CB は $\alpha_3 > 0$ よりタンブリング液晶である.図3では再び液晶分子ディレ クタのz成分が1へと戻る様子が見られ、時間経過により回 転し続けると考えられる.

図4は5CBの場合を表している.前述の通りアライニング 液晶のため,8CBのような液晶分子の回転運動は確認できない.流れ方向に対する微小角を維持しているため,経過時間 による変化があまり見られない.

Fig.3 Liquid crystal alignment direction(8CB, $\gamma=10$, v=0)

3.2 粘度

シミュレーションの計算結果として r 方向の格子点ごとに 応力値を出力している.応力値から全体のトルクを求め,計 算範囲全体の応力値,粘度を求めた.図 5 はせん断速度γ = 30,電場V=0~60の条件で実験とシミュレーション双方で粘度 を求め,グラフに示したものである.

シミュレーションで求めた粘度は実験値と比べて大きく異 なる結果となった.これはシミュレーションでは理想的な状 態を想定しており、実際の実験時の状況と液晶配向状態が大 きく異なったことが要因としてあげられる.また、今回の数 値シミュレーションでは平板壁面でのアンカリング強度につ いて考慮していないことも、数値のずれの要因の一つと考え られる.

Fig.4 5cb viscosity by experiment and simulation

4. 結言

数値シミュレーションにより,タンブリング液晶特有の回転運動を 8CB の結果で確認できた.

5CB の粘度をシミュレーションで求め、実験で得た粘度と 比較し、シミュレーションと実験での違いを確認した.

5. 文献

- (1) 蝶野成臣, 辻知宏, "液晶駆動型マイクロアクチュエー タの開発(第5報, 平板駆動の数値計算)",日本機械学会 文集(B編),77巻781号
- (2) 辻知宏, 蝶野成臣, "タンブリング液晶の二重円筒間せん断流れの数値解析", Nihon Reoroji Gakkaishi Vol.40, No.5, 239-244