フォースプレート計測に基づく座位時の上半身質量中心推定

COM estimation during sitting from force plate measurement

システム工学群

動的デザイン研究室 1200074 鈴木 誠也

1. 緒言

人体の運動を解析するためには、質量中心の推定が重要で ある.特に座位の質量中心推定ができれば、輸送機器搭乗者 の挙動解析、座位のバランスモデリング、立位が困難な患者 のバランス評価に応用できる.しかし、人間の座位時の実用 的な質量中心推定法は確立されていない.立位の質量中心推 定の手法として、モーションキャプチャ(以下 MC)計測、 慣性センサ計測のほかに、我々の研究グループではフォース プレート(以下 FP)計測からの質量中心推定法⁽¹⁾を提案して いる.FP計測の利点は、計測が容易であることである.

本研究では FP 計測から座位時の質量中心を推定する. 安静時のみならず故意に動く場合や,乗り物が動く場合にも対応させるため,安静座位,故意揺動,座面揺動の3パターンでの質量中心推定法を検討する. 対象は矢状面のみとする.

立位時と大きく異なる点として,身体が地面と椅子の2か 所での接触することが挙げられる.これに関しては,FPを座 面のみに配置した場合(脚部から受ける力を無視)と,FPを 座面と足裏の両方に配置した場合の2パターンで検討した.

2. 座位時上半身の質量中心推定

2.1 座位時身体モデル

座位身体モデルを図1に示す.モデルでは、文献⁽²⁾を参考 に肋骨下端を境界として、骨盤と上半身(頭部、上胴、腕) を分割する.上半身は肋骨下端まわりに回転運動し、支持面 は水平移動可能とする.以下では、添え字を支持面は*s*、骨盤 部は*p*、上半身部は*u*とする.

前方を x 軸, 鉛直方向を z 軸とする. また, (X,Z)を絶対座

Fig. 1 Link model

標系の変位, (x,z)を相対座標系の変位とする.相対変位の原 点は, x軸を肋骨下端の中点, z軸を支持面の高さとする. X_s は支持面の絶対変位, θ_u は上半身の姿勢角とし,右回りを正 とする.臀部下の FP からの計測値として,垂直力を R_{z1} , せ ん断力を R_{x1} , y軸周りのモーメントを N_{y1} とする.身体パラ メータとして, m_p を骨盤部質量, m_b を上半身質量, J_u を上半 身質量中心まわりの慣性モーメント, L_p を骨盤の高さ, l_p を 骨盤の質量中心の高さ, l_b を肋骨下端から上半身質量中心ま での長さ, gを重力加速度とする.以下では,姿勢角 θ_u が微 小として,身体の上下運動はしないことを前提とする.

図1のモデルの並進と回転に関する運動方程式は、以下の ようになる.

$$m_{u}\ddot{x}_{u} = -\frac{R_{z1}}{g} \ddot{X}_{s} - R_{x1}$$

$$\left(\frac{J_{u}}{l_{u}} + m_{u}l_{u}\right) \ddot{x}_{u} + m_{u}gx_{u}$$

$$= \left\{ \left(\frac{R_{z1}}{g} - m_{u}\right) l_{p} + \left(L_{p} + l_{u}\right)m_{u} \right\} \ddot{X}_{s} + N_{y1} \right\}$$

$$(1)$$

2.2 FP 計測に基づく質量中心推定

2.2.1 脚部からの力を無視する場合

まず図1の骨盤部と上半身のように、人体が脚部を無視した1リンクモデル(以下モデルI)であると仮定し、立位時と同様の手順で上半身の質量中心推定を行った.これによって、脚部から受ける力や股関節にかかるモーメントがないことになるため、立位時の質量中心推定に近い手順で質量中心 推定を行う.

式(1)の第1式より、上半身の質量中心加速度は、

$$\ddot{\tilde{x}} = -\frac{1}{m_u} \left(\frac{R_{z1}}{g} \ddot{X}_s - R_{x1} \right)$$
(2)

式(1)と式(2)より、上半身の質量中心位置は、

$$\tilde{x}_{u} = \frac{1}{m_{u}g} \left[-\left(\frac{J_{u}}{l_{u}} + m_{u}l_{u}\right) \ddot{x}_{u} + \left\{ \left(\frac{R_{z1}}{g} - m_{u}\right)l_{p} + \left(L_{p} + l_{p}\right)m_{u} \right\} \ddot{X}_{s} + N_{y1} \right]$$
(3)

2.2.2 脚部からの力を考慮する場合

次に人体を単純な1リンクモデルとして考えるのではなく、図1全体のような骨盤部と脚部が繋がっているモデル (以下モデルII)で質量中心推定を行う.このモデルでは、 脚部で踏ん張った際に生まれる力R_{hx}、R_{hz}や、股関節にかか るモーメントN_hなどを考慮したうえで質量中心推定を行う 必要がある.なお、身体パラメータとして、m_tを大腿部質量、 m_tを下腿部質量、m_fを足部質量、L_tを大腿部の長さ、l_tを大

Table 1 Correlation coefficient of COM displacement between FP and MC

	Rest		Intentional		Seat	
	sitting test		swing test		swing test	
Model	Ι	II	Ι	II	Ι	II
Subject A	0.59	0.82	0.97	0.98	0.75	0.34
Subject B	0.15	0.42	0.98	0.96	0.35	0.10
Subject C	0.50	0.51	0.99	0.99	0.76	0.62

Table 1 Correlation coefficient of COM acceleration between FP and MC

	Rest		Intentional		Seat	
	sitting test		swing test		swing test	
Model	Ι	II	Ι	II	Ι	II
Subject A	0.82	0.83	0.93	0.98	0.72	0.48
Subject B	0.39	0.28	0.96	0.86	0.12	0.51
Subject C	-0.02	-0.00	0.98	0.99	0.63	0.33

腿部の質量中心変位、 L_l を下腿部の長さ、 l_l を下腿部の質量 中心変位、 L_f を足部の長さ、 l_f を足部の質量中心変位とする.

このモデルの場合,上半身の質量中心加速度は次のように なる.

$$\ddot{x} = -\frac{1}{m_u} \left(\frac{R_{z1} + R_{hz}}{g} \ddot{X}_s - R_{x1} + R_{hx} \right)$$
(4)

式(4)より、上半身の質量中心位置は、次のようになる.

$$\tilde{x}_{u} = \frac{1}{m_{u}g} \left[-\left(\frac{J_{u}}{l_{u}} + m_{u}l_{u}\right) \ddot{x}_{u} + \left\{ \left(\frac{R_{z1} + R_{hz}}{g} - m_{u}\right) l_{p} + \left(L_{p} + l_{p}\right) m_{u} \right\} \ddot{X}_{s} + N_{h} \right]$$
(5)

3. 実験概要と推定結果

3.1 実験内容

FP はテック技販の TF3040 を使用し, 垂直力とせん断力を 測るため, 臀部下と足部下にそれぞれ1枚ずつ,計2枚使用 した. この FP を揺動実験機に固定し,座面揺動ではこの実 験機を揺動させた.また,FP の測定値から推定した質量中心 の妥当性検証のために,MCカメラを使用し,上半身質量中 心を求めた.

計測時間は予備時間 5 秒,解析時間 35 秒,計 40 秒として 9 回の実験を行った.サンプリング周波数を 100Hz,被験者 は 3 人とした.膝の角度は 90 度になるように指定し,カメ ラの都合上,被験者は腕部を胴体から矢状面方向に 30 度の 位置で組んだ状態で実験を行った.なお,計測データに対し て,0.1~1.0Hz のバンドパスフィルタを適用した.

座面揺動実験では揺動実験機に揺動加速度 0.05~1.5Hz の 帯域で 0.05Hz 刻みの周波数 20 個を印可し,加速度振幅を 0.2Hz として実験を行った.

3.2 検証結果

推定結果の MC と FP の相関係数を表 1 と表 2 に示す.安静座位実験の結果を図 3 示す.被験者 A は特にモデル II で強い相関を示し、モデル I よりモデル II の方が近い推定結果になった.被験者 B と被験者 C は MC と FP で位相にずれが生じていたので、少し低い相関係数になった.

故意揺動実験では、被験者にメトロノームで指定した 0.25Hz で揺動するように指示した.故意揺動実験の結果を図 4 に示す.故意揺動実験では、どの実験においても MC と FP が強い相関になり、多少モデル B の方が強い相関になった.

座面揺動実験の結果を図5に示す.結果として、どの実験 も強い相関にはならず、MCとFPの推定結果に大きく差が でた.今回、上半身を1リンク剛体モデルと仮定し、背骨の

Fig. 5 COM estimation results in seat swing test (Subject A)

湾曲については無視して FP 推定を行ったため、これが座面 揺動実験の推定結果に影響していることが考えられる. その ため、座面揺動実験の推定には、まず背骨の柔軟性を調査し、 背骨を1つの梁とみなし、モード評価を行う必要がある.

4. 結言

本研究では, FP 計測を用いた, 座位時の質量中心推定の確 立を目的とした.実験より,特に脚部からの力を考慮した場 合の安静座位時と故意揺動時の2パターンにおいて, MC と FP で大きな差異なく推定することができた.しかし,座面揺 動時は背骨の湾曲が推定結果に大きく影響している.また, 個人によって推定精度に差が生まれているので,現状ではそ れぞれの質量中心推定を行うことは難しい.今後は,背骨の 柔軟性を調査したのちに,背骨のモード評価を行い,座面揺 動時の推定を検討していく.

文献

- (1) 園部元康,井上喜雄,FP 計測に基づく立位時の矢状面 質量中心推定(推定誤差の発生メカニズムと推定精度 の評価)日本機械学会論文集 85 巻 877 号
- (2) 阿江通良, 湯海鵬, 横井孝志, 日本人アスリートの身体 部分慣性特性の推定