船尾フィンの形状がプロペラ性能に与える影響の予測

1. 序論

近年の海運・造船業界では、環境問題の観点から船舶の省 エネルギー化が求められており、燃費向上に向けた開発が進 められている. 燃費向上の手段としては燃料の燃焼効率向上、 プロペラ効率の向上等が挙げられる.そこで本研究ではプロ ペラ効率に影響を与える流体の流れに着目する.一般的に肥 大船の船尾部では流体がビルジ部(船尾湾曲部)通過の際、圧 力勾配が主流方向と垂直方向に発生し、船底から上方に回り 込む流れと、側面から船体内側に回り込む流れが交差するこ とによりビルジ渦と呼ばれる縦渦が発生する.一筋に伸びる ビルジ渦の分布を図1に示す.このビルジ渦の発生により船 体抵抗の増加や、渦の軸がプロペラ面(回転面)に存在するこ とでプロペラ効率の低下を招く事が分かっている.ビルジ渦 を抑制するにはフィン等が有効であるが現在開発,使用され ている船尾フィンはビルジ渦抑制に対しての明確な位置や 形状が定まっていない.

本研究では船尾付近の水の流れに着目し,数値流体計算に よりプロペラ周辺の流れを予測してビルジ渦の抑制を最終 目的としたフィンの影響について評価を行う.本報告ではフ ィンがプロペラ周辺の流れに及ぼす効果について考察する ためプロペラを除いた状態でフィンの形状,位置に関する影 響を数値計算によって調査する.

Fig. 1 Vorticity distribution on the hull surface.

2. 研究方法

2. 1 数值計算手法

本研究では三次元非圧縮性乱流を扱い,数値計算ソフトに は OpenFOAM を用いる.支配方程式は連続の式,レイノル ズ平均ナビエ・ストークス方程式を用い,乱流モデルは ko-SST を用いる.速度・圧力解法として PIMPLE 法⁽¹⁾を採用す る.空間の離散化は有限体積法を用い,方程式の対流項には 二次精度風上差分法,拡散項には二次精度中心差分法を用い る.格子生成には OpemFOAM の標準ユーティリティーに含 まれる blockMesh と snappyHexMesh を用いる.

2. 2 計算対象

計算対象には公表されているベンチマークとなる JBC(Japan Bulk Carrier)⁽²⁾モデルを用いた.モデルを図2に示 す.本計算では喫水線以下を解析領域とする為,単相流とし て計算し,水面の自由表面影響は考慮しないものとする.モ デルは全長7118mm,幅1125mm,船底から水面までの高さ システム工学群

航空エンジン超音速流研究室 1200128 廣田 知大

を 386.9mm とした. また図 2 ではフィンの取り付け位置と 比較を行った断面の位置, プロペラ面の範囲を示している. また付加するフィンの各モデルを図 3 に示す. サイズは以 下の図示の通りとし, 厚みは 5mm とする.

2.3計算領域及び境界条件

計算領域は船長方向×幅方向×高さ方向に 40m×40m× 15.387mとする.また,総セル数は約1000万である.本研究 の計算条件を表1に示す.また領域の境界条件は表2に示し た様に,流入,流出境界を一様流,両サイドと水面及び底面 の境界は滑り境界とし,船体とフィンのモデル表面の境界は 滑り無し境界とした.

Table 1 Caluculation condition.

Inflow velocity	-1.179[m/s]
Turbulence model	kω - SST
Turbulent intensity	2.6×10 ⁻⁶ [%]
Turbulent energy k	4.698×10 ⁻⁸
Specific dissipation rate ω	4.698

Table 2 Boundary conditions.

Boundary surface	Boundary condition
Inlet	Uniform flow
Outlet	Uniform flow
Side wall	slip wall
Side wall	slip wall
Bottom	slip wall
Atmosphere	slip wall
Hull	No slip wall
Fin	No slip wall

3. 計算結果及び考察

図4にフィン無しと position A に各フィンを取り付けた場 合の解析断面右舷側の主流方向流速分布を示す. model 1 で は図中赤枠内で示した箇所で流速の小さい範囲が without fin より拡大した. model 2 は model 1 同様に低速領域が僅かに 拡大した程度で変化は小さい.

次に図4と同様の条件のx軸渦度分布を図5に示す.model 1ではビルジ渦の範囲が縦長になった他,ビルジ渦の渦度の 変化は小さいが,青枠内で示した船底付近の渦度は減少した. model2はビルジ渦の規模・位置に変化は見られなかったが, model1同様に青枠内で示した船底付近の渦度は減少した.

次に図6にフィン無しと position B に各フィンを取り付け た場合の解析断面右舷側の主流方向流速分布を示す. without fin は低速領域が形状に沿っているのに対し, model 1 では低 速領域にばらつきが見られ, 図中赤枠内で低速領域が生じた. model 2 はビルジ渦の範囲の低速領域が減少し, 赤枠で示す 範囲に低速範囲が拡大した.

次に図6と同様の条件である場合の x 軸渦度分布を図7に 示す. model 1 では図中青枠内で渦度の強い範囲が縮小し, プロペラ面内である白枠内で示した船体表面付近の渦度も 減少した. model 2 はビルジ渦の規模,中心位置に対しては 変化が小さいが, model 1 同様に白枠内の船体表面付近の渦 度が僅かに減少した.

以上から model 1 に関してビルジ渦の発生抑制は難しいが, position B に取り付けることでビルジ渦の小規模化が見込め る.また両取り付け位置共に図中の全体的な渦度の範囲は縮 小した.両フィン共に position B に位置に取り付ける事で船 体表面付近の渦度は減少した.発達段階でより後方位置に付 加する事で,全体的な渦度の減少に繋がることが推測される.

4. 結言

船尾に2種類のフィンを取り付け、プロペラ効率に関与 するプロペラ面流入直前の流れ場の変化の比較を行った. フィンの形状、位置次第でビルジ渦の発達を抑制できるこ とが分かった.またプロペラ面内に低速領域が広がる事か ら、プロペラを流速の低い場所に置く事で効率向上に繋が る伴流利得をより利用できる事が見込める.

今後はフィンを付けたことによる抵抗の定量的な評価, プロペラを回転させた場合の考慮などを行う予定である.

参考文献

- (1) 春日悠, 今野雅, 一般社会法人オープン CAE 学会, OpenFOAM による熱移動と流れの数値解析
- (2) JAPAN Bulk Carrier, Tokyo 2015 A Workshop on CFD in CFD Hydrodynamics, https://t2015.nmri.go.jp/jbc_gc.html

without fin model 1 model 2 Fig. 4 Velocity Distribution [Fin position A].

without fin model 1 model 2 Fig. 5 Vorticity Distribution [Fin position A].

without fin model 1 model 2 Fig. 6 Velocity Distribution [Fin position B].

without fin model 1 model 2 Fig. 7 Vorticity Distribution [Fin position B].