卒業論文要旨

ローレンツ力を用いた磁気浮上モータの浮上回転機構の統合化

-力とトルクの解析-

Integration of horizontal and rotation control mechanism of using Lorentz force -Analyses of force and torque-

知能機械システム工学コース 機械・航空システム研究室 1200132 藤井佑貴

向かい合う固定子のコイルに図 4 中に示したローレンツ力 と同方向の力を発生させると水平制御,逆方向に力を発生さ せると回転制御をすることができる.

Fig.1 Model for magnetically levitated motor

Fig.2 Rotor shape

1.緒言

近年,真空中やクリーンルーム等の環境下での作業において,摩擦や塵埃などの問題を解決することのできる磁気浮上 機構は分子ターボポンプの軸受けや浮上搬送装置に利用されている.

それらの具体例は電磁石の吸引力等を利用した磁気浮上 方法であり、ローレンツ力を利用した磁気浮上機構の使用例 は乏しい、しかしローレンツ力を利用した磁気浮上方式では、 その他の方式に比べて装置に対して可制御域を広くとれる ことから、小さい機構においての有用性があると考える.

先行研究では、回転子の浮上位置制御、回転制御を行うこ とができた.しかし、この機構では回転子の鉛直、水平、回 転制御にそれぞれ異なる巻線と電磁石を使用しており、機構 や制御の複雑であることが課題であった.本研究では、機構、 制御の簡素化を図るため、水平と回転の制御を1つの巻線で 行う統合化した機構を検討した.本発表では回転制御時に回 転子にかかるトルクと水平力の解析を行い、回転制御と浮上 位置制御の非干渉化について考察する.

2. 磁気浮上モータ

2.1 浮上回転機構の概要

新しく設計した機構を図1に示す.なお,図1中の番号は 1-回転子,2-回転・水平制御用電磁石,3-鉛直制御用電磁石, 4-浮上用永久磁石,5-水平方向用測定センサ,6-鉛直方向用 測定センサを表している.次に回転子の平面図を図2に,コ イルと電磁石の位置関係を図3に示す.新機構では水平制御 と回転制御を一種類の電磁石から制御するため,コイルを図 2中黄線のように八角形に近い星型に巻くことにより1つの コイルで回転と水平制御を可能にしている.

固定子に磁界が発生したときの回転子に発生するローレ ンツ力を図4に示す.なお、この図は簡略化のためコイルの 形状、固定子の配置を変更している.回転子のコイルに垂直 に発生したローレンツ力の、回転子の中心を通る線成分を水 平制御に用い、その線に垂直な成分を回転制御に用いている.

Fig.3 Positional relationship between stator and rotor

Fig.4 Force generated in coil during control

2.2 トルク, 水平力の解析

新機構で回転制御が可能か確認するため,3次元有限要素 法を用いて回転制御時に回転子にかかるトルクと水平方向 のローレンツ力を解析し,安定点の推移と回転時の回転子 の中心位置の変化を確認した.安定点とはトルクが正から負 に変化する点の事を表しており,回転子は安定点上で回転 する.解析には電磁界解析ソフトJMAGを用いた.

解析に使用した機構のモデルは図3のモデルを用いた. 回転子のコイルの巻き数は30回巻,固定子の300回巻とし,回転子コイルには1.2[A]の電流を流し,固定子のコイルに最大値3[A]の三角波を流した場合と最大値3[A]の三 相交流を流した場合の解析を行った.

固定子のコイルに三角波を流した場合の、回転子にかかるトルク,X方向の水平力をそれぞれ図5,図6に同条件の三相交流を流した時のトルクとX方向の水平力を図7,図8,に示す.このX方向は図2,図3に対応している.

まず,回転制御時に回転子に発生するトルクを比較する. 図 5,図 7 は横軸が電流の位相,縦軸が回転子の回転角,カ ラーバーは反時計回りを正とした回転子に発生するトルク を表している.図 5,図 7 より安定点が連続であることか ら,三角波,三相交流を流すことで連続な回転が可能であ ることがわかる.しかし,電流の位相に対する安定点の推移の傾きが大きく変化している部分があり,角速度は一定にならない.そのため回転制御時に回転子は,角速度増減しながら回転すると考える.

三角波と三相交流の安定点の推移を比較すると,三角波 を流した時のほうがわずかに滑らかになっているので,流 す電流の波形は三角波のほうが適していると考える.この 安定点の推移は周期的に発生している.そのため,流す三 角波,三相交流の周期を長くとることによって,この急な 安定点の推移が滑らかになり,角速度の変化がおおよそ一 定な回転をすることができると考える.

次に、回転制御時に回転子に発生する水平方向の力を比 較する.図6,図8は横軸を電流の位相,縦軸を回転子の回 転角,カラーバーはX軸方向を正とした回転時に回転子に 発生する力を表している.図6,図8より回転制御中に回転 子が回転角度45[。]を一周期として、正負のローレンツ力 を受けており、微振動が発生すると考えられる.Y方向に もこの微振動同様に発生すると考える.これにより、回転 制御時に回転軸の偏心が発生し、浮上位置が変化するた め、水平制御が行われる.回転制御と水平制御は1つの巻 き線の電磁石を使用しているため、回転と水平制御の力が 干渉し、トルクが失われ回転制御ができなくなる可能性が 考えられる.この振動を抑えるため、加える三角波,三相交 流の振幅を小さくするという方法がとれるが、その場合回 転子にかかるトルクも小さくなり回転が安定しない可能性 が考えられる.これらの水平方向の力の変化は回転子の回 転角に依存しているため、回転子の回転角度を検出するこ とができれば角度に対応したローレンツ力を発生すること で振動を抑制できると考える.

Fig.5 Torque of triangle wave

Fig.6 Lorentz force of triangle wave

Fig.8 Lorentz force of three phase alternating

次に,以下の数式を用いて最大値3[A]の三相交流を流し た場合でのトルクを計算した.用いた数式を(1)から(5),諸 元を表1,計算結果のグラフを図9に示す.式中にある下付 文字は図3中の固定子1,2,3を表している.向かい合う 固定子では同値のローレンツ力,トルクが発生しているた め,計算は省略している.磁束密度の係数b,回転子のコイ ルに流れる電流Iをともに1として計算しているため,図 5,図7よりも計算値が大きくなっているため,図5,図7 よりも計算値が大きくなっている.

$$F_i = Ibi_i \tag{1}$$

$$T_1 = F_i L \sin\{180 - (\theta_1)\}$$
(2)

$$T_2 = F_i L \sin\{180 - (\theta_2)\}$$
(3)

$$T_3 = F_i L \sin\{180 - (\theta_3)\}$$
(4)

$$T = 2T_1 + 2T_2 + 2T_3 \tag{5}$$

Table.1 each variables	
Lorentz force generated between	F_i
each stator[N]	(i = 1, 2, 3)
Torque received by rotor[Nm]	Т
Torque generated between each	T_i
stator[Nm]	(i = 1, 2, 3)
Current flowing through rotor[A]	I = 1
Rotation angle[$^{\circ}$]	θ
Distance from rotor center to	L = 184
stator[mm]	
Magnetic flux density	b = 1
coefficient[-]	
Current flowing though each	i _i
stator[A]	

図9より、回転角度15[°],30[°]の時にトルクが小さく なり、安定点が不連続になっている事がわかる.これは、 先ほど述べた回転角度のときに一部の固定子の磁界と回転 子のコイルの角が重なってしまい、周方向に働くローレン ツ力が打ち消されてしまい、どの位相でもトルクが発生し ないからだと考える.このトルクの打ち消しは回転角度に依 存しているので、角と重なる時にその他の固定子に流す電 流をあげる等の回転角度に対応した電流制御を行う事で回 避できると考える.また、電流の位相100[°]から150[°] の時と240[°]から290[°]間でもトルクの減少が見られる のでその位相で

の電流値を増減させることで、安定点の推移がよりなめらかになると考える.

Fig.9 Torque of three phase alternating

3. 結言

水平制御,回転制御を統合化した機構を検討し,固定子に 電流を加えた場合の回転子にかかるトルク,水平力を解析す ることによって,この制御方法での回転制御の検証をするこ とができた。そして,従来の機構を通じて新機構での位置制 御の線形化の可能性を示すことができた.

今後は回転制御時に新たに加える電流パターンを検討し、 解析によって微振動の抑制の可能性を示していく.

文献

(1)小栗佑斗,岡宏一,原田明徳 "共鳴型非接触給電を用いた MC型磁気浮上システム-回転制御機構の開発-"高知工科大
学 機械学会論文集 2019年57巻909ページ
(2)伊佐川晃平,増澤徹 "ローレンツ型磁気浮上人工心臓の研

究開発"茨城大学

http://www.mech.ibaraki.ac.jp/masuzawalab/research/abstract/21isakawa.pdf