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1 Introduction

Many studies indicate that individual differences
in personality traits have a great influence on individ-
ual, especially regarding individual behavior, personal
capabilities, and personal value. Further, personality
traits are associated with life satisfaction, happiness,
subjective well-being, self-esteem, and individual in-
novativeness. After decades of research, the field of
personality psychology is finally approaching the con-
sensus on a general taxonomy of personality traits, the
Big Five personality traits dimensions: openness to
experience, extraversion, conscientiousness, agreeable-
ness, and neuroticism.

Personality traits have been associated with spe-
cific brain regions. Most of researchers adopt voxel-
based morphometry (VBM) analysis to explore the
personality-brain mechanism from two levels: vertex
and regional based. However, their findings are mixed
with great inconsistencies, and they do not have a
full understanding of the brain-personality relation-
ship. Several unknown features could explain the brain-
personality traits relationship. Thus, we contributes to
the exploration of the relationship between the brain
structure and the personality traits with a predictive
model based on deep learning.

Deep learning techniques have been very actively
investigated in recent years, such as convolutional neu-
ral network (CNN)[1] can allow us to capture fea-
tures relevant to the personality traits that previous
researchers would not have think of. We hence pro-
posed a three dimensional convolutional neural net-
work (3D CNN), using Big Five personality traits (Big
Fives) as training labels. We applied our model to
raw preprocessed T1-weighted structural magnetic res-
onance imaging (MRI) data. Big Fives were mea-
sured by the Ten-item Personality Inventory (TIPI-J)
in Japanese version.

2 Methods

2.1 Preprocessing

We selected two personalities as labels: 300 of
openness subjects and 300 of accommodativeness sub-
jects.

Neuroimaging preprocessing steps are required.
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Indeed, for instance, magnetic resonance images are
not comparable across different scanners, subjects, and
visits, even when the same protocol is used. We de-
signed a standard analysis pipeline with neuroimag-
ing preprocessing steps of structural brain MRI: bias
field correction, skull stripping, and intensity normal-

ization.

1 Left: the overlapping image of MRI
before and after bias field correction opera-
tion; Middle: the overlapping image before
and after BET operation; Right: extracted
brain region

We adopted n4 bias field correction (N4ITK) for
the correction of the MRI data contrast due to mag-
netic field inhomogeneity, Brain extract tool (BET) for
skull stripping to remove the skull and other non-brain
tissue from magnetic resonance images, and white stripe
normalization for normalizing intensity across all indi-
viduals. Figure 1 illustrates the bias field correction
and skull stripping.

After neuroimaging preprocessing, we adopted the
min max normalization to rescale all intensity values
between 0 and 1.

2.2 3D CNN

Residual networks won the ImageNet contest in
2015 and demonstrated the great improvement of the
depth of the neural network while having fast conver-
gene. We developed a 3D convolutional neural network
adopting residual network 50 (ResNet-50) architecture
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figure (2). The architecture has 50 layers containing loss decreased gradually.
four types of residual blocks each with three batch nor-  5ccyracy

malization layers. The first residual blocks includes

three convolutional layers with 64 filters of 1 x 1 x 1, 0560
64 filters of 3 x 3 x3, and 256 filters of 1 x 1 x 1. The 0.540

second residual blocks includes three layers with 128

filters of 1 x 1 x 1, 128 filters of 3 x 3 x 3, and 512 0520
filters of 1 x 1 x 1 for convolution. The third resid- 0.500
ual blocks includes three convolutional layers with 256
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filters of 1 x 1 x 1, 256 filters of 3 x 3 x 3, and 1024
filters of 1 x 1 x 1. Th fourth residual blocks includes 0.460

three convolutional layers with 512 filters of 1 x 1 x
1, 512 filters of 3 x 3 x 3, and 2048 filters of 1 x 1 x 300Epoch
1. The output of the last residual block is sent to a

3 The accuracy in the training phrase.

3D average pooling layer to further reduce it, followed loss
by a fully connected layer and an output for binary
classification with softmax nonlinearity. 0.800
256 x 256 x 256 x 1 0.700
300 Epoch
4 The loss in the training phrase.
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Knowing more about ourself is important, espe-
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fxixisia life aspects. In our study, we investigated the re-

cially personality traits are relevant to several human

lationship between human brain structure and per-
sonality traits, using a 3D convolutional neural net-

work with ResNet-50 architecture we developed. Our

model was used to classify openness and accommoda-
coolll I Il Weee w5 | DUz G tiveness on human brain MRI. The results shows that
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RINI25S the classification accuracy was higher than chance level

_ (50%). Our preliminary result indicates that there is

the relationship between brain structure and person-

2 3D CNN architecture ality traits.

For the next step, we can still explore the fine-
tuning of other parameters, such as batch size, learn-
The whole brain grayscale MRI (Height: 256, Width: ing rate and optimization function. We also envision

256, Slices: 256) serves as the input to predict the Big  different approaches to analyze our model accuracy.

Fives labels as the output. S0t

3 Analysis [1] LeCun, Yann, and Yoshua Bengio. ”Convolu-
During the training phase with 300 epochs (figure tional networks for images, speech, and time se-

3), the accuracy increased stably and gradually. Dur- ries.” The handbook of brain theory and neural

ing the training phase with 300 epochs (figure 4), the networks 3361.10 (1995): 1995.



