Fabrication and Characterization of Sn related conductive thin films by mist CVD

1. 背景

薄型ディスプレイや太陽電池等に不可欠な透明導電性酸 化物 (TCO: Transparent Conducting Oxides) は,可視光領域で 透明 (可視光領域 380 nm~750 nm で透過率 80%以上) かつ低 い抵抗率 ($1.0 \times 10^3 \Omega \cdot \text{cm以下}$)を有する材料である^[I]. 代表 的な TCO 材料としては,酸化インジウム(In_2O_3),酸化亜鉛 (ZnO),酸化スズ(SnO_2)等が報告されている.本研究では, TCO 材料の中でも酸化スズと酸化インジウムに着目し,研究 を行った.

酸化スズは、熱的安定性および化学的耐久性を有し、資源 も豊富であることから、太陽電池用の電極やガスセンサ用の 材料として広く用いられており、また近年では、燃料電池の 金属セパレータ材料としても注目されている.現在、酸化ス ズにフッ素 (F)を添加したフッ素添加酸化スズ (FTO: Fluorine doped Tin Oxide)では、 $2.0 \times 10^4 \Omega \cdot \text{cm}$ の抵抗率が 報告されているが、フッ素は反応性・毒性が極めて高く、他 の物質と強く結びつくため、取り扱いの面から安全に注意を しなければならない.また、毒性の低いアンチモン (Sb)を 添加したアンチモン添加酸化スズ (ATO: Antimony doped Tin Oxide)は、 $1.0 \times 10^{-3}\Omega \cdot \text{cm}$ の抵抗率が報告されているが、 この抵抗率はITOと比較し1桁高く、さらなる低抵抗化が求 められている.

また酸化インジウムは、スズを添加したスズ添加酸化イン ジウム (ITO: Indium Tin Oxide) が他の材料と比較し、低い抵 抗率 ($2.0 \times 10^4 \Omega \cdot \text{cm以F}$)を有するため、現在 TCO 材料の 利用対象の中心となっている.しかし、この ITO の主金属で ある In はレアメタルであり、価格の高騰に陥ることが度々 ある.最近では In のリサイクル手法も確立され、一時のピー クと比較すると価格は低下傾向を示しているが、需要と供給 は年々増加傾向を示しているため、今後も予断を許さない状 況にある^[2].

2. 目的

本論文では、ミスト CVD 法を用いて Sn 系透明導電膜の作 製を行い、他の薄膜作製手段と比較して低コストかつ低抵抗 化な薄膜作製を目指した.

まず資源豊富かつ熱安定性,化学的耐久性そして安全性を 有する Sn 系 TCO 材料である酸化スズに着目し,課題となっ ている低抵抗化 ($1.0 \times 10^3 \Omega \cdot cm$ 以下)に挑戦した.また,薄 膜作製技術の安全面・コスト面を考慮し,環境・人体に低負 荷かつ安価なミスト化学気相成長 (ミスト CVD) 法を使用 し,低毒性・低抵抗である Sb を添加させた ATO 薄膜を作製 することで,信頼性の高い TCO 材料を目指した.

次に、価格の高騰が懸念される In を用いた酸化インジウ ム薄膜を大気圧下プロセスのミスト CVD 法を用いて作製し た.他の薄膜作製手法と比較してコスト面で優位なミスト CVD 法を用いることで、低コストな ITO 薄膜の作製を目標 とし、他の薄膜作製手法と同等かそれ以下の抵抗率(2.0×10⁻⁴ Ω・cm以下)を目指した. 知能機械システム工学コース

川原村研究室 1225005 上田 真理子

3. ミスト CVD について

ミスト CVD 法とは, 原料を含んだ溶液を超音波で噴霧さ せ, 生成したミストを, キャリアガスを用いて成膜部に送り, 熱分解により基板上に成膜させる方法である^[3].本研究では ファインチャネル反応炉, 複数の噴霧器およびまぜまぜ器を 用いる第3世代ミスト CVD 法を用いた.詳細を以下に示す.

3.1 ファインチャネル方式

本研究で用いたファインチャネル方式の模式図を図1に 示す.ファインチャネル方式は、原料供給部と反応炉で構成 され、反応炉内部は狭差二平板といわれる非常に狭い流路と なっている.ミスト状原料溶液は整流部で整流された後、急 激に狭くなった反応炉に導入されるため、流体の粘性、粘性 に伴って発生する圧力勾配によってその運動エネルギーが 減少し、流れに対して垂直な方向に流体が拡散する.またそ のため、伝熱効率が向上し、炉内温度を設定温度に保つこと ができるため、反応炉内部の雰囲気を均一に保つことができ る.

Fig.1 Fine Channel structure

3.2 まぜまぜ器

本研究で用いたまぜまぜ器の模式図を図2に示す.まぜ まぜ器は異なる原料を溶解させた溶液をそれぞれ別の噴霧 器に入れ、噴霧させたミストをミストの状態で一旦混合させ た後、反応炉へ搬送する手法である.一例として,反応溶液 に支援剤を入れると,反応の進行により沈殿または発熱等の 複合反応が発生してしまう為、別々に供給することで、それ を避けることが可能となる.これは反応炉部分ではなく、原 料をミスト化させる噴霧器の改良を行った形である.噴霧器 各々から搬送するガスの流量割合を調整することで薄膜の 組成制御が非常に容易になった.反応支援,ドーピング,組 成制御に有効であり、混晶の場合であれば高品質な薄膜が作 製可能である.

Fig. 2 Mazemazeki structure

4. 研究内容

本研究では,以下に示す項目に関して研究を行った.本稿 では(1)-②および(2)-④の成果について報告する. その他の内 容は卒業論文にて詳しく述べる.

- ATO 薄膜の作製 (1)
 - Sb ドープ濃度最適化 1
 - 反応支援剤最適化 (2)
 - 3 成膜温度最適化
- ITO 薄膜の作製 (2)
 - 1 H₂O 濃度最適化
 - 2 溶媒最適化 3
 - オゾン支援
 - Sn ドープ濃度最適化 (4)

5. ATO 成膜条件

ATO の成膜を行うにあたって、ドーピング濃度や支援剤 の供給量を変化させる際の操作性を考慮し, 第3世代ミスト CVD システムを利用した. また, 出発原料に Sn²⁺および Sb³+ を用いるが, 形成膜は Sn⁴⁺および Sb⁵⁺となっているはずで あり,酸化を促進させるための何らかの支援剤を必要とする. したがって、支援剤にH2O,H2O+HNO3,H2O+HNO3+HCI の3種類を準備し、形成膜の特性がどのように変化するかに ついて調査した. Case1~4の実験条件を表1に示す. 片方の 噴霧器(Ch.A)にSn 原料とドープ剤を混合させ、もう一方 の噴霧器(Ch.B)は支援剤のみを調合した.Sn 原料には塩 化スズ (SnCl₂·2H₂O)を使用し、ドープ剤には塩化アンチモ ン (SbCl₃),溶媒にはメタノールを使用した.Sb ドープ濃 度を最適化した結果より, Sb ドープ濃度 2.0 at%程度のとき 最も低い抵抗率を示したため, SnCl2・2H2O の濃度を 0.05 mol/L, SbCl₃の濃度を0.0008 mol/Lとした. 成膜温度は400℃, 成膜時間は5分に固定し、石英基板上に成膜した.基板は成 膜前に, アセトン, イソプロパノール, 超純水の順に各2分 間超音波洗浄を行った後、反応炉に設置し、2分間オゾン洗 浄を行い, 基板表面の有機物を除去した.

Table.1 ATO Experimental conditions

Ch. A		Ch. B
Case1	SnCl ₂ ·2H ₂ O+SbCl ₃ +MeOH	Non support
Case2		H ₂ O
Case3		H ₂ O+HNO ₃
Case4		H ₂ O+HNO ₃ +HCl

5.1 実験結果·考察

成膜した ATO 薄膜の選択した支援剤による特性の変化を 評価するため, 膜厚測定, ホール測定による比較を行った. 結果を図3に示す. 目的膜は Sn4+で構成された SnO2を基体 とするが、原料となる SnCl2 は Sn²⁺であり、2 価から 4 価へ の酸化反応を起こす必要がある。また HNO3 は N5+を有し、 安定な N^{3-への変化において 8 個の e⁻が必要となる.実験結} 果よりこの HNO3 を用いることで、Sn の酸化反応が引き起こ されていることがわかり,同様にHCl,H2Oについても検討 したところ, HCI は反応の支援および安定化, H2O は酸化に 必要だと考えられ、HNO3、HCI、H2O全ての支援剤を用いる ことが高品質かつ低抵抗な ATO 薄膜を作製するために有効 であることがわかった.これらの結果を踏まえ反応支援剤支 援量などの最適化を行ったところ、HNO3+HCl+H2Oのとき 最も低い抵抗率を示し, 6.5×10⁻⁴ Ω·cm が得られた.

次に結晶性評価のために,X線回折(XRD)測定を行った. XRD 測定の結果を図 4 に示す. Case1 と比較して Case2 で は、SnO2(110)面などの配向性が増えているが、全ピークの半 値幅は小さくなっており,結晶性の向上が確認できる. Case3 では、ルチル型の SnO₂(110)面、(200)面、(211)面のピ

ークが確認でき、特に(200)面にて高くピークがでている. Casel と比較すると、ピークが低いことが観察できるが、こ れは膜厚によるものだと思われる. また Case4 では、Case3 と同様に、ルチル型の SnO2(110)面、(200)面、(211)面のピー クが確認できた. (200)面にて、それぞれの支援剤の中で最も 高いピークが観察でき,また半値幅も狭く,結晶性の向上が 確認された.

6. IT0 成膜条件

ITOの成膜を行うにあたって、ドーピング濃度や支援剤の 供給量を変化させる際の操作性を考慮し、第3世代ミスト CVD システムを利用した.表2に成膜条件を示す.片方の 噴霧器(Ch.A)にIn原料とドープ剤を混合させ、もう一方 の噴霧器(Ch.B)は支援剤のみを配合した.In原料には塩化 インジウムIII(InCl₃)を使用し、ドープ剤には塩化スズ

(SnCl₂·2H₂O),溶媒にはメタノールを使用した.このとき, Snドープ濃度を0.0~8.0 at%に変化させるため,塩化スズの 濃度は0~0.0036 mol/Lとした.また,支援剤にはH₂Oを使 用し,0~100 vol%まで供給量を変化させた.水の濃度制御を 行うために,搬送ガスと希釈ガスの流量制御を行った.濃度 はそれぞれの噴霧器の霧化量が同一であると仮定した場合 の設定流量から算出した.成膜温度は400℃,成膜時間は5 分に固定し,基板は石英基板を用いた.

	Ch. A	Ch. B	
Solute	$InCl_3^{*1}$: $SnCl_2 \cdot 2H_2O^{*2}$	-	
Solution concentration	0.045 : 0 mol/L (Sn : 0 at%) 0.045 : 0.0009 mol/L (Sn : 2 at%) 0.045 : 0.0018 mol/L (Sn : 4 at%) 0.045 : 0.0027 mol/L (Sn : 6 at%) 0.045 : 0.0036 mol/L (Sn : 8 at%)	-	
Solvent	Methanol (100)	H ₂ O ^{*3} (100)	
Carrier gas	N ₂ , 2.0 L/min	N ₂ , 0.0~5.0 L/min	
Dilution gas	N ₂ , 3.0 L/min	N ₂ , 0.0~5.0 L/min	
Voltage	24 V		
Temperature	400 °C		
Growth time	5 min		
Substrate	Quartz ^{*4} , (30×30 mm, t=0.5mm)		
*1 Indium(III) chlorid	le 99.999%, Sigma-Aldrich		

*² Tin(II) Chloride Dihydrate : 99.9%, Wako

*3 Deionizd water

*4 Quartz : Ichikawa tokushu glass

6.1 実験結果·考察

成膜した ITO 薄膜の Sn ドープ濃度および H₂O 濃度変化に よる特性の変化を評価するため、膜厚測定,ホール測定によ る比較を行った.結果を図5に示す.H₂O 濃度に着目すると, 膜厚は 10 vol%で最も増加し,抵抗率は 20 vol%で最も減少 した.また,ホール移動度は 10~20 vol%付近にて増加し, キャリア密度は H₂O 濃度の増減に関わらずほぼ同様の結果 となった.これは,H₂O が酸化剤として ITO 薄膜の成膜を促 進していることがわかり,最適値が存在することが確認でき た.また,Sn ドープ濃度に着目すると,4.0 at%のとき最も低 抵抗化を示し,1.233×10⁴ Ω ·cmの抵抗率を得られた.こ の値は,ITO が TCO 材料として広く用いられる抵抗率の 1.0 ~1.5×10⁴ Ω ·cmの範囲内であり,ミスト CVD 法を用いた 低コストな ITO 薄膜の作製を実現できたといえる.

次に,結晶性評価のために,X線回折(XRD)測定を行った.最も低抵抗化を示した H_2O 濃度 20 vol%の Sn ドープ濃度ごとの XRD 測定の結果を図 6 に示す.それぞれ In_2O_3 の ピークが確認でき,多結晶成長していることがわかる.また,最も低抵抗化した 4.0 at%のとき,他の濃度と比較して $In_2O_3(222)$ 面のピークの減少かつ(400)面のピークの増加が確認できた.このことから, $In_2O_3(400)$ 面へのピークが強いかつ(222)面のピークが弱い膜ほど抵抗率が低い傾向があることがわかった.

7. 結言

本研究ではミスト CVD 法を用いて、様々な成膜条件の最 適化を行い、ATO 薄膜の低抵抗化に挑戦した.支援剤最適化 においては、HCl と HNO3を使用したとき、現在まで発表さ れてきた抵抗率よりも低い 6.5×10⁴ Ω ・cmが得られ、信頼性 の高い低抵抗 Sn 系 TCO 材料を作製することを達成できた.

次に、ミスト CVD 法を用いて低コストな ITO 薄膜の作製 を行い、抵抗率 2.0×10⁴ Ω·cm以下を目指した. Sn ドープ濃 度および H₂O 濃度の最適化を行った結果, Sn ドープ濃度 4.0 at%, H₂O 濃度 20 vol%のとき、1.233×10⁴ Ω·cmの抵抗率 を得られ、低コストな ITO 薄膜を作製することが可能な成膜 レシピを見出すことに成功した.

8. 参考文献

- [1] 日本学術振興会透明酸化物光・電子材料第166委員会編"透明 導電膜の技術".
- [2] 独立行政法人石油天然ガス・金属鉱物資源機構,鉱物資源マ テリアルフロー,2013
- [3] T. Kawaharamura: Ph. D. Thesis, Kyoto University, Kyoto, 2008.