小型 Blended Wing Body 旅客機の空力性能評価と形状探索

Numerical Evaluation of Aerodynamic Characteristics and Shape Finding for a Small Blended Wing Body Aircraft

1. 緒言

近年,地球環境保全に対する関心が高まる中,航空 機においても低燃費・低騒音で環境性能のよい機体が 航空機開発メーカーには求められるようになっている. 例えば,現在日本で開発が行われている三菱スペース ジェット(Mitsubishi SpaceJet)では複合材技術,新型エン ジンを用いることで,従来の同型ジェット機と比較し て低燃費・低騒音で環境性能のよい機体を目指してい る⁽¹⁾.このように航空機の設計は,従来のTube-and-Wing (TAW)機の設計の改善に集中している.

一方,新しい形状の航空機の実現に向けて様々な研 究が行われており、そこで注目されているのが、 Boeing や NASA によって先駆的研究⁽²⁾ と概念実証実験 ⁽³⁾が進められている, Blended Wing Body (BWB) がある. この BWB 形状は胴体と主翼を一体化し、機体全体が滑 らかな曲面で構成される外見的特徴を持っている.こ の形状の特徴として,不連続な凹凸のない流線形とし 抵抗や騒音の低減に加え、胴体と主翼を一体化するこ とで,胴体部分も揚力を生み出し,濡れ面積に対して, 揚力を生む面積が相対的に大きくなり、高い揚抗比を 得ることができる.また,主翼のみに揚力が集中せず 強度に余裕があるため構造負荷の低減、内部空間が大 きいためペイロードの増加といった点が従来機と比較 して期待できる. このような BWB は Liebeck ら⁽⁴⁾によ って、重量増加のために経済的に成立しないような大 型機であっても、経済性が十分に高い機体が実現でき るといった観点から概念が提唱されている⁽⁵⁾.

形状による空力性能,騒音低減,ペイロードの増加 の観点から,BWB 形状の利点は大型機のみならず小型 機にも適用できるのではないかと考えられる.しかし ながら,大型機と小型機では航続距離や最大離陸重量 が大きく異なり,BWB 形状を小型機とし適用した設計 例が少ない.

本研究では従来の TAW 機と比較し, BWB 形状の特 徴を生かし,ペイロードの増加,なおかつ同等以上の 揚抗比を持つ新しい小型機形状を検討することとした.

2. 数值計算法

本研究では、流体計算に宇宙航空研究開発機構 (JAXA)が開発した高速圧縮性流体解析ソルバである FaSTARを用い、形状探索のための最適化計算に米国サ ンディア国立研究所が開発した最適化システムである Dakota を用いる.

2-1 支配方程式

計算対象周りの流れ場計算の支配方程式には、3次元 圧縮性 Euler 方程式を用いる. 知能機械システム工学コース 航空エンジン超音速流研究室 1225015 唐澤 颯人

$$\frac{\partial}{\partial t} \int_{V} \boldsymbol{Q} dv + \int_{S} \boldsymbol{F}(\boldsymbol{Q}) \cdot d\boldsymbol{s} = 0 \tag{1}$$

ここで、**Q**は保存量ベクトルで、**F**は非粘性流束ベクトル、**ds**は面積の絶対値をもつ外向き法線ベクトルである.それぞれは以下のように与えられる.

$$\boldsymbol{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ e \end{pmatrix} \tag{2}$$

$$F(Q) = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uw \\ \rho uw \\ (e+p)u \end{pmatrix} i + \begin{pmatrix} \rho v \\ \rho uv \\ \rho uv \\ \rho v^2 + p \\ \rho vw \\ (e+p)v \end{pmatrix} j + \begin{pmatrix} \rho w \\ \rho uw \\ \rho vw \\ \rho w^2 + p \\ (e+p)w \end{pmatrix} k(3)$$

ここで、 ρ は密度、u、v、wはそれぞれx、y、z方向の 速度、eは単位体積あたりの全エネルギー、pは圧力で ある.i、j、kはそれぞれx、y、z方向単位ベクトルで ある. また、 ρ 、e、pの関係は比熱比を γ とする理想気 体であることを仮定する.すなわち、圧力は以下のよ うに与えられる.

$$p = (\gamma - 1) \left[e - \frac{\rho}{2} (u^2 + v^2 + w^2) \right]$$
(4)

γは空気の場合, 1.4 である.

2-2 離散化手法

本研究では、空間の離散化にはセル中心有限体積法 を用いる.各面での垂直方向の流束と面積を掛けたも のの和で評価する.

$$F(\boldsymbol{Q}) \cdot d\boldsymbol{s} = \sum_{k}^{max} [F_k(\boldsymbol{Q}) \cdot d\boldsymbol{s}_k]$$
(5)

ここで, kは各面の番号を示し, 要素の面の数である. また各流束は以下のように与えられる.

$$F \cdot ds = (f_x n_x + f_y n_y + f_z n_z)S$$

= $T^{-1}T(f_x n_x + f_y n_y + f_z n_z)S = T^{-1}F_nS$ (6)

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & n_x & n_y & n_z & 0 \\ 0 & t_{1x} & t_{1y} & t_{1z} & 0 \end{bmatrix}$$
(7)

$$\begin{bmatrix} 0 & t_{2x} & t_{2y} & t_{2z} & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
$$F_n = \begin{bmatrix} \rho u_n \\ \rho u_n^2 + p\\ \rho u_n u_{t1} \\ \rho u_n u_{t2} \\ (e+p)u_n \end{bmatrix}$$
(8)

$$\boldsymbol{T}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & n_x & t_{1x} & t_{2x} & 0 \\ 0 & n_y & t_{1y} & t_{2y} & 0 \\ 0 & n_z & t_{1z} & t_{2z} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(9)

ここで、 f_x , f_y , f_z はx, y, z方向の流束成分, Tは回 転行列, Sは面積である.回転行列の成分の (n_x, n_y, n_z) は面の法線ベクトル成分, (t_{1x}, t_{1y}, t_{1z}) , (t_{2x}, t_{2y}, t_{2z}) は2つの接線ベクトルである.これらの法線ベ クトル、接線ベクトルは単位ベクトルである.また, u_n , u_{t1} , u_{t2} は法線方向,接線方向の速度である.こ こで以下の関係式が成り立つ.

ここで、 Q_n はセル垂直方向にx軸を持つ局所座標系での保存ベクトル、Qは全体座標での保存量ベクトルである.式(8)の F_n はセル境界面で定義され、リーマン解法では境界面を挟んだ両側の値 Q_{na} 、 Q_{nb} を用いて求められる.

$$\boldsymbol{F}_n = \boldsymbol{F}_n(\boldsymbol{Q}_{na}, \boldsymbol{Q}_{nb}) \tag{12}$$

ここで、 Q_{na} 、 Q_{nb} は式(10)を使って求める.また、数 値流束には SLAU スキーム⁽⁶⁾を用い、空間精度には MUSCL 法⁽⁷⁾を用いて 2 次精度化する.

2-3 最適化手法

本研究の形状探索のための最適化手法には、勾配法 を用いた.最適化問題を目的関数F(X)の最大化とする. 最適化問題に対する数値解法として,次式に従い繰り 返し計算により最適解を得る.

$$X^{q+1} = X^q + \alpha \cdot S^q$$
 (13)
ここで X は設計変数ベクトル、 S は探索方向ベクトル、 α はステップ幅、 q は試行回数を示している.

探索方向 *S* の決定には目的関数*F*(*X*)の勾配*VF*(*X*)が 用いられる.しかし,探索方向に制約条件がある場合 にはこれ以上進むことができなくなる.そのため,探 索方向を決める方法として実行可能方向法⁽⁸⁾を用いる. ここで,制約条件を以下のように仮定する.

$$g_1(X) \le 0$$
 (14)
 $X = (x_1, x_2)$ (15)

ここで、 $g_1(X)$ は制約条件であり、 $g_1(X)$ の境界上に現 在の設計点 X^1 があるとする.このときの探索方向Sを 決定するには、

- Step 1. 設計点 **X**¹での勾配(**V**F(**X**¹),**V**g₁(**X**¹))を求める.
- Step 2. 次の 2 つの不等式を満たす探索方向 *S* を求める.

$$\nabla F(\mathbf{X}^1) \cdot \mathbf{S} \ge 0 \tag{16}$$
$$\nabla q_1(\mathbf{X}^1) \cdot \mathbf{S} \ge 0 \tag{17}$$

このとき,式(17)を満たす**S**のなかで,式(16)を最大に するような**S**を選択すると,目的関数**V**Fを最も増加さ せることができる.

実行可能方向法のアルゴリズムは以下のように与え られる.

- Step 0. 初期点 x_0 を与え, q = 0として Step 1 へ.
- Step 1. 終了判定条件を満たしていたら停止する.
- Step 2. 探索方向**S**の決定.

- Step 3. 直線探索によりステップ幅αを計算し,式 (13)によりX^qを更新する.
- Step 4. q = q + 1として Step 1 へ戻る.

3. BWB 形状の定義

3-1 形状定義変数

BWB 形状を表現するための形状定義変数は,Heら⁽⁹⁾ によって定義された2次元平面でのBWB 形状変数を基 に,より自由な形状を表現できるようするため3次元 に拡張した.定義した形状変数は,以下の表1と図1に 示すような変数により与えられる.

Table 1 Parametric shape variables					
cb	The chord of body root				
cbt	The thickness of body root				
bt	The half span				
ct	The chord of wing tip				
ctt	The thickness of wing tip				
cr	The chord of wing's root				
crt	The thickness of wing's root				
d	The distance of wing's root				
u	from BWB nose				
dh	The distance of wing's root				
db	from BWB bottom				
sba	Sweep-back angle				
da	Dihedral angle				
n1, n2, n	3 Control points				

3-2 形状表現方法

本研究では,胴体と主翼が滑らかに接続される BWB 形状に対して,胴体部分はベジェ曲線,主翼部分は直 線を用いることで形状表現を行った.ベジェ曲線は制 御点を自由に配置することでき,自由度が高く滑らか な曲線を表現することができる.そのため,BWB 形状 のような滑らかな曲線によって構成される形状を表現 するのに、効果的であると考えたためである.図2の 赤線で示す部分が、4点制御のベジェ曲線で表現され、 以下の式で与えられる.また表2にそれぞれに対応す る座標位置を示す.

$$P = (1-t)^{3}P_{A} + 3(1-t)^{2}tP_{B} + 3(1-t)t^{2}P_{C} + t^{3}P_{D}$$

$$0 \le t \le 1$$
(18)

胴体の滑らかな部分を4点制御のベジェ曲線で,主翼 部分は直線を用いて表現すると,24点の座標点が必要 となる.これらの座標点を3.1節で述べた定義変数を用 いて,従属的に変化させるように座標位置を設定した. またスパン方向には、スーパークリティカル翼型をベ ジェ曲線に沿って,翼弦長と翼厚を変化させて分布さ せ,それぞれの定義断面は凸包によって補間すること で,BWB形状を表現する.

Table 2 Coordinate

	140	e = e e e e e e e e e e e e e e e e e e	inace	
P_A	P_0	P_4	P ₁₂	P ₁₆
P_B	<i>P</i> ₁	P_5	P ₁₃	P ₁₇
P _C	<i>P</i> ₂	P_6	P ₁₄	P ₁₈
P_D	<i>P</i> ₃	P_7	P_{15}	P ₁₉

3-3 概念形状

本研究では、100 人乗りの総エコノミーの小型 BWB 旅客機を設計することとする.キャビン高さは、従来 の TAW 機の小型機と比較し、E190 は 2[m], CRJ1000 は 1.89[m], MSJ は 2.03[m]⁽¹⁾であるため、本研究でも 2[m]あれば従来機に劣らないものだと考えた.また座 席ピッチ、座席幅、通路幅は MSJ⁽¹⁾の値を参考に、少 し大きめの値を用いて、それぞれ 80[cm], 50[cm], 50[cm]とする.

キャビン幅については、BWB 形状の胴体断面が楕円 形であり、機内を与圧した場合に円形に比べて機体内 外の圧力差による力に弱いといった構造上の問題点を 改善するために、リブの設置が必要となってくる.そ のリブがキャビンの内部圧力負荷に耐えるように設計 する必要があり、座席幅、通路、備品、リブを確保す るために,約 3.6[m]⁽¹⁰⁾の値を用いた.これらの値を用 いると,5列×10席がキャビン幅を有効に使用できたた め,左右対称に8[m]×3.6[m]のキャビンを1つずつ配置 することとした.

表3にキャビン緒言,図3に概念平面図を示す. 平面 図はBoeingとNASAの大型機向けの実験機 X-48B⁽¹¹⁾を 参考にキャビンが収まるように設定した.

以上のことを踏まえた上で,CADデータを生成した結 果を図4に示す.図4の赤色のBox部分は表3の値を満 たしたキャビンを示す.

Table 3 Introduction of cabin			
height [m]	2		
seats pitch [cm]	80		
seats width [cm]	50		
aisle width [cm]	50		
cabin width [m]	3.6		
depth [m]	8 (0.8×10)		

Fig. 3 Concept of planform

4. スパン方向翼型選定

本研究では SC(2)-0012 翼を分布させたものと,キャンバーがついた SC(2)-0712翼を分布させたものを比較した. BWB 形状は胴体部分も翼型であるため,胴体部分により揚力を生む形状を分布させるが,本形状においても有効であるか比較検証を行った.キャビンを収めるため,胴体中心は 16%,翼端は 10%と最大翼厚比を固定した.

4-1 計算条件

高度 10000[m]を M=0.8 で巡航飛行すると想定し, AoA=0, 2, 4[deg]と変化させて計算を行った. 主流条件 を表 4 に示す.

Table 4 Freestream condition

Parameters	Values
Angle of attack [degree]	0, 2, 4
Mach number [-]	0.8
Temperature [K]	223.252
Pressure [Pa]	26499

4-2 計算格子

計算領域は機体全長をLとしたとき,主流方向50L, 高さ方向に50L,機体幅方向に50Lとした.セル数は約 170万点,計算対象周りの表面最小セルサイズは 0.035[m],表面最大セルサイズは 0.28[m]である.計算 領域を図5,計算対象の表面格子を図6に示す.

Fig. 6 Mesh around initial shape

4-3 結果及び考察

表 5 に流体計算により,得られた空力性能の結果を 示す.迎角が増加することで,Cl値とCd値ともに増加 していることが分かる.また SC(2)-0012 翼を分布させ たときは4°,SC(2)-0712 翼を分布させたときは2°の 時にL/Dの値が大きい値をとった.SC(2)-0712 翼を分布 した際,2°-4°にかけて揚抗比が減少したのは,淀み 点が下面側に移動することで上下面に圧力差が生まれ やすくなったが、主流方向の面積が増加し,Cl値の増 加分よりも,Cd値増加分が大きいためだと考えられる. また、2[°]の時の表面圧力分布を図7、Cp分布を図8 に示す.図7の下面側の表面圧力分布に、大きな差異 は見られなかった.しかし、上面側の後縁部分におい て、SC (2)-0712 翼を分布させた形状の方が、負圧の領 域が広いことが分かる.

また図 8 の Cp 分布を比較すると, SC(2)-0012 翼は対称 翼であるため,上下面にほとんど圧力差が生まれてい ないことが分かる.一方で,SC(2)-0712 翼を分布させ た際は,下面側ではより前縁側で圧力回復が起こって いるのが分かる.これは,上面側に反りがつくことで, 空気が緩やかに加速され,下面側では,翼形状の傾き が SC(2)-0012 翼と比較して早い箇所からついており, 空気が加速する箇所が前縁側に移動したと考えられる. その結果,圧力差を生みやすくなり,揚抗比が向上し たのではないかと考えられる.

以上の結果から BWB 形状において, 胴体部分により 揚力を生む形状を分布させることは有効であると考え られる.本研究では,大型機向けの BWB⁽¹¹⁾形状を基に, スパン方向に SC(2)-0712 翼を分布させものを基本形状 とし,巡航状態は迎角を 2°つけた状態とする.

Table 5 Aerodynamic Characteristics

SC0012			SC0712			
AoA	Cl	Cd	L/D	Cl	Cd	L/D
0	0.0081	0.0111	0.7271	0.1189	0.01280	8.6144
2	0.1422	0.0149	9.5623	0.2500	0.02088	11.9688
4	0.2738	0.0259	10.5778	0.3776	0.03525	10.713

Fig. 7 Comparison of surface pressure distribution

5. 形状探索のモデル化

5-1 最適化計算のモデル化

本研究では、巡航状態で従来機よりも高い揚抗比を 目指した設計を行うため、次のように最適化問題のモ デル化を行った.

$$(maximize L/D)$$
(19)

し L = W目的関数は LD とし、制約条件は機体重量と揚力が釣 り合うこと(L=W)とし、以下の式のように整理できる.

$$L = \frac{1}{2}\rho U^2 C_L S = W \tag{20}$$

$$\frac{W}{C_L S} = \frac{1}{2}\rho U^2 \tag{21}$$

右辺は主流動圧により,固定値となる.Wを固定とし, 整理すると

$$C_L S = \frac{2W}{\rho U^2} \tag{22}$$

となる. Wは重量推算から, C_Lは数値計算結果から, S の翼面積は図 9 の青枠で示す形状定義変数から求め, 制約条件を設けることとする.

5-2 重量推算

重量推算は J. Roskam⁽¹²⁾の見積もり方法に基づいて行う. 重量推算に必要な設計要求を表 6 に,飛行フェーズを図 10 に示す.

まず機体の重量を要素ごとに分解すると、以下の式 が与えられる.

$$W_{TO} = W_{OE} + W_F + W_{PL} \tag{23}$$

ここで、 W_{TO} は最大離陸重量、 W_{OE} は運用空虚重量、 W_F は燃料重量、 W_{PL} はペイロード重量となる.次に W_F について以下の式ように分解できる.

 $W_F = W_{Fused} + W_{Fres}$ (24) ここで、 W_{Fused} は使用する燃料、 W_{Fres} は予備燃料となる.ここで、 W_{Fused} を機体重量比 M_{ff} を用いて整理すると

$$M_{ff} = \frac{W_1}{W_{To}} \cdot \frac{W_2}{W_1} \cdot \frac{W_3}{W_2} \cdot \dots \cdot \frac{W_i}{W_{i-1}} \cdot \frac{W_{i+1}}{W_i} \cdot \dots \cdot \frac{W_n}{W_{n-1}}$$
(25)
$$W_{Fused} = (1 - M_{ff}) W_{TO}$$
(26)

のように表せる. M_{ff} は図 7 で示す 1.ウォームアップ, 2.タキシー,3.離陸,4.上昇,6.降下,9.着陸に関して は同じ種類の機体であればほぼ同等の値を示すため, リージョナルジェット機の値を用いる.5.巡航,7.ダイ バージョン,8.空中待機は飛行性能によるため,以下 のブレーゲーの式を用いる. 巡航時

$$\frac{W_{cruise}}{W_{cruise-1}} = \exp\frac{-RC}{V(L/D)}$$
(27)

ここで, Rは航続距離, Cは燃料消費量, Vは飛行速度, L/Dは揚抗比となる. 待機時

$$\frac{W_{Loiter}}{W_{Loiter-1}} = \exp\frac{-EC}{L/D}$$
(28)

ここで, Eは空中待機時間となる. 重量推算における各フェーズの機体重量比を表7に示す.

式(23), (24), (26)より,運用空虚重量は

 $W_{OE} = W_{TO} - (1 - M_{ff})W_{TO} - W_{Fres} - W_{PL}$ (29) という関係式で表せる. W_{PL} については設計要求から 既知となり、従来機のエコノミークラスでは乗客 1人 あたりの手荷物を 44[lb]として計算を行うが、ペイロー ドの増加も目指しているため、一人あたりの手荷物を 66[lb]とする.

*W_{To}とW_{oE}*については, BWB のデータを整理して得られる統計関係式^{(12), (13), (14), (15), (16)}により

$$\log_{10} W_{TO} = 0.9656 \log_{10} W_{OE} + 0.4736 \tag{30}$$

を用いる.式(29),(30)はそれぞれ1次関数に近似できる ことから,任意のW_{TO}値3点で計算を行い,2式の交点 の値を算出する.この値を制約条件のL=Wに用いる値 とする.

Table 7 Mission fuel fraction			
phase		W_{i+1}/W_i	
1	Warmup	0.990	
2	Taxi	0.990	
3	Takeoff	0.995	
4	Climb	0.980	
5	Cruise	Eq. (27)	
6	Descent	0.990	
7	Diversion	Eq. (27)	
8	Loiter	Eq. (28)	
9	Landing	0.992	

上述のようにして制約条件に必要な重量推算値を算出 するが,式(27),(28)のL/Dが未知数のため制約条件を設 けることができない.本研究では4節の基本形状の CFD結果から,L/D=約12を算出している.そのため, 本章での最適化計算においてL/Dが向上することを考 慮し,従来TAW機と同様のL/D=15⁽¹⁷⁾を代入し,重量 推算を行う.

また, BWB 機と従来機と比較するため, 乗客 1 人あ たりの手荷物は 44[lb]とし, *W_{TO}とW_{OE}の統*計関係式は 以下の式を用いる.

 $\log_{10} W_{TO} = 1.012 \log_{10} W_{OE} + 0.186 \tag{31}$

5-3 重量推算結果及び考察

重量推算の結果を図 11 と表 8 に示す.表 8 から, BWB は最大離陸重量,運用空虚重量,燃料重量が従来 機と比較して軽量で済むことが分かる.特に運用空虚 重量の差が大きく,BWB は従来機と比較して,機体自 体の重量が軽量になると考えられる.その結果,最大 離陸重量と燃料重量の軽量に繋がったと考えられる.

最大離陸重量が軽量になると、離陸滑走距離、着陸 滑走距離が短縮する傾向にある.リージョナルジェッ ト機の用途は地域内を飛ぶことであり、主要空港と比 較し地方空港は滑走路の距離が短い傾向にある.その ため、BWB は従来機よりも短い距離で離着陸でき、重 量推算の観点からは有効ではないかと考えられる.本 研究では、この重量推算値を用いて制約条件を設ける こととする.

Fig. 11 Comparison of weight estimation

Table 8 Result of weight estimation

	U		_
	BWB concept	Conventional	
Maximum take- off weight [lb]	77793	98714	
Operational empty weight	37605	56400	
Fuel Wight [lb]	16091	20419	

6. 小型 BWB 形状探索

5-1 目的関数

4 節の結果から,高度 10000[m]を迎角=2° で巡航飛 行するとし,目的関数は *LD* とする.また制約条件は5 節の結果を用いると 29 となる.主流条件は4節と同様 である.

5-2 設計変数

設計変数は制約条件に関係する,翼付け根長さ,ス パン方向長さ,翼端長さと後退角とする.設計空間を 表9に示す.

Table 9 Design space				
Parameters	Initial point	Lower bounds	Upper bounds	
The chord of wing tip	2.25	1.125	4.95	
The half span	18	9	27	
The chord of wing's root	7.5	3.75	16.5	
Sweep-back angle	35	20	40	

5-3 結果および考察

表 10 に最適化計算により,得られた空力性能の結果 を示す.また図 12 に PCP による設計変数と目的関数の 推移,図 13 に表面圧力分布,図 14 に Cp 分布を示す.

表 10より,初期形状よりも L/D が向上した形状を得 ることができた.図12から翼端長さが0.3~0.5付近でば らつき,スパン方向長さと翼付け根長さについては, 初期値から微増した値を他のケースはとっている.ま た,後退角については,ほとんど初期位置から変化し ていてないことが分かる.そのため,最適化計算は初 期形状から制約条件に関する設計変数を増加させる方 向に探索が進んでいることが分かり,特にばらつきの 大きい翼端の長さが空力性能に影響をおよぼしている と考えられる.

図 14 より、翼胴境界位置と 99%位置での Cp 分布を 比較すると、どちらの形状においても前縁部分におい て、順圧力勾配となったあと、圧力回復が起きている. そのため、前縁で急加速された流体が、急激に減速す ることが分かる.そのため、この地点では衝撃波の発 生による造波抵抗が生まれていると考えられるが、双 方に大きな差異は見られないため、本計算の空力性能 の違いには影響はないと分かる.また翼型を比較する と、最適化した形状では、翼厚が異なっていることが 分かる.本研究では、翼厚を固定しているため、翼端 の長さが伸びることで翼厚が増加していることが考え られる.それに伴い、主流方向の面積が増加したこと が Cd値の増加した原因ではないかと考えられる.図13 の表面圧力分布を比較すると、下面での分布に差異は 見られず、上面部では、翼端の長さが変化したことに より翼面積が増加している.それにより、上下面での 圧力差の生まれる範囲が広くなったことで Cl 値が増加 したと考えられる.結果として Cd 値の増加分よりも Cl 値の増加分が多いことで L/D の向上に繋がったと考え られる.

以上の結果から、L/Dを向上させるために主翼面積を 広げ、揚力の発生面を増加させることが望ましいこと が分かった.しかし、最適化計算によって得られた解 は初期形状とあまり変化しておらず、設計空間に対し て、探索範囲が狭いことが分かった.制約条件を不等 号条件や最適化手法を変更することで、より広く探索 を行い、空力性能を改善し、小型 BWB 機に適した形状 探索を行えると考えられる.

Fig. 13 Comparison of surface pressure distribution

7. 結言

本研究では、100 席程度の小型 BWB 旅客機の提唱を 目指し、最適化計算による形状探索を行い、小型機に 適した BWB 形状を検討した.はじめに、BWB 形状を 表現するため、形状定義変数の設定、形状表現方法の 検討を行い、BWB の特徴である胴体と主翼が滑らかに 繋がった形状を表現することができた.

次に,スパン方向に分布させる翼型を選定するため に, スーパークリティカル翼である SC(2)-0012 と SC(2)-0712 との比較を行った. BWB 形状は胴体部分も 翼型形状であるため,対称翼ではなくキャンバーを持 った翼型を分布させることは有効であると分かった. また従来機と同等の空力性能で、ペイロードを1.5倍に した際の重量推算結果からは、最大離陸重量、運用空 虚重量,燃料重量ともに軽量で済むことが分かった. このことにより、リージョナルジェット機のような地 域内を飛ぶことを想定している小型機に対して、短い 距離で離着陸できることは従来機よりも優れていると いったことを示すことができた. 最適化計算による小 型 BWB 旅客機の形状探索を行うことができた. 初期形 状と比較して、制約条件を満たすような形状を探索す ることで、翼面積を広げることで、揚力発生面を増や すことで、空力性能を向上させることができた.しか し、得られた解は初期形状から大きく変化することな く,設計空間に対して,探索範囲が狭く,小型 BWB 機 に最も適した形状ではない可能性もある. そのため, 制約条件や最適化手法の 変更により, さらに空力性能 を向上し、よりよい解を得ることができると考えられる.

参考文献

- (1) 三菱重工技報, 航空宇宙集, Vol. 51, No. 4, pp. 2-3, 2014.
- (2) R. H. Liebeck, M. A. Page, and B. K. Rawdon, "Evolution of the revolutionary blended wing body subsonic transport. Transportation beyond 2000: Technologies needed for engineering design", NASA CP-10184, pp 431-460, 1996.
- (3) M. B. Carter, D. D. Vicroy, D. Patel., "Blended-wingbody transonic aerodynamics: summary of ground tests and sample results", AIAA-2009-935, 2009.
- Liebeck, R., "Design of the blended wing body subsonic transport", *Journal of Aircraft*, Vol. 41, No. 1, pp. 10-25, 2004.
- (5) 日本航空宇宙工業会革新航空機技術センター, "革新航空機技術の実用化研究開発に関する長期 構想の見直し報告書(第1編市場調査及び機体 技術)",日本航空宇宙工業会,2002.
- (6) E. Shima, and K. Kitamura, "Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds," *AIAA Journal*, Vol. 49, No. 8, pp. 1693-1709, 2011.
- (7) B. Van Leer, "Towards the Ultimate Conservation Difference Scheme V. A Second-Order Sequel to Goudnov's Method", *Journal of Computational Physics*, Vol. 32, pp. 101-136, 1979.
- (8) G. N. Vanderplaats, "Numerical Optimization Techniques for Engineering Design: with Applications", McGraw-Hill, Inc., New York, 1984.
- (9) He, and Cao, "Structural optimization of an underwater glider with blended wing body", Advances in Mechanical Engineering 2017, Vol. 9(9), pp. 1-11, 2017.Kevin R. Bradley, "A Sizing Methodology for the Conceptual Design of Blended-Wing-Body Transports", NASA/CR, 2004.
- (10) Griffin, "Intelligent Control for Drag Reduction on the X-48B Vehicle", AIAA Guidance, Navigation, and Control Conference, pp. 1-12, 2011
- J. Roskam, "Airplane Design, Part I, Preliminary Sizing of Airplanes", DARcorporation, 1985.
- (12) R. H. Liebeck, M. A. Page, and B. K. Rawdon, "Blended-Wing-Body Subsonic Commercial Transport", AIAA Paper 98-0438, 1998.
- (13) J. N. Hefner, W. L. Sellers III, J. L. Thomas, R. W. Wlezien, and R. R. Antcliff, "Challenges and Opportunities in Fluid Mechanics Research", 20th Int. Council Aero. Sci., ICAS-96-2.1.1, 1996.
- (14) V. E. Denisov, A. L. Bolsunovsky, N. P. Buzoverya, B. I. Gure-vich, and L. M. Shkadov, "Conceptual Design for Passenger Airplane of Very Large Passenger Capacity in FlyingWing Layout", 20th Int. Council Aero. Sci., CAS-96-4.6.1, 1996.
- (15) R. Martinez-Val, and E. Schoep, "Flying Wing versus Con-ventional Transport Airplane", The 300 Seat Case, 22nd Int.Council Aero. Sci., ICAS2000-1.1.3, 2000.
- (16) 圓谷悠,李家賢一, "概念設計手法を用いた Blended Wing Bodyの機体成立性の検討",日本航 空宇宙学会論文集, Vol. 52, No. 603, pp. 186-188, 2004.
- (17) 中橋 和博,"航空機の空力形状と最適設計", ながれ, Vol. 26, pp. 259-265, 2007.