Ice particle enlargement in freeze concentration system via recrystallizer tank utilization

1. 緒言

現代社会において、人々の食生活は多様化し続けている. その要因の一つは、食の供給形態が変化していることにあり、 コンビニエンスストアなどが身近に存在し, 消費者の選択肢 が広がっているためである(1). コンビニエンスストアの勢力 拡大に伴い, 食品機械メーカーに対して品質の良い食品を大 量生産したいという開発ニーズがある(1).

食品の加工技術には、乾燥、殺菌、粉砕、濃縮などの操作 があり⁽²⁾,液状食品においては,濃縮操作が広く用いられて いる.本研究の濃縮プロセスを Fig.1 に示す.本方式は凍結 濃縮法と呼ばれ,水溶液を冷却し微小な氷粒子を生成した後, これを分離することにより濃縮を行う方法である.他の濃縮 法と比較すると最も低温下の操作であるため, 微生物汚染を 防ぎ安定した品質の濃縮液が生産できる.しかし、氷粒子が 微小化するにしたがい, 氷粒子群に濃縮液が保持されるため, 回収率が低下してしまうことが問題となっている. そのため, 晶析工程において大粒径の氷粒子を生成する必要がある.し かし、氷核発生や氷結晶成長の機構は未だ明らかになってお らず、データの蓄積も充分になされていない(3). そこで、単 成分溶液を用いた実験を行い、 粒子径に 関連するパラメータ の解明と、粒子径コントロール法の構築を目的とした.

2. 氷粒子増大の原理

凍結濃縮法は、固液分離を考えると大粒径の氷粒子生成が 有効であるため,再結晶化機構の効果的な利用が求められる. 凍結濃縮における氷の再結晶化機構は, Ostwald Ripening と 呼ばれる. ここで, 氷粒子の凝固点は,

$$T_e = T_i^* \left(1 - \frac{2\sigma}{r\rho_I L} \right) \tag{1}$$

 T_e : 半径rの氷粒子の凝固点 [K], T_i^* : 溶液の凝固点 [K], σ:界面張力 [J/m²], r: 氷粒子半径 [m],

 ρ_I : 氷の密度 [kg/m³], L: 氷の融解熱 [J/kg]

で表される.様々な粒径の氷粒子が混在している状態では, Fig. 2 に示すように、小さな氷粒子の凝固点が溶液の平衡温 度よりも低いため融解し、その融解潜熱が大きな氷粒子の成 知能機械システム工学コース

ものづくり先端技術研究室 1225027 島田 惇平

長に使われる. これが Ostwald Ripening の原理である. 本研 究においても、より大きな氷粒子を得る方法のひとつとして、 本原理の利用を試みた.

3. Ostwald Ripening 現象の実験的検討

3.1 実験目的

Pronk らは、撹拌しながら氷粒子を貯蔵する実験を行い、 溶質の種類によらず時間とともに粒子径が増加することを 報告している(4).しかし、20時間以上にも及ぶ長時間の実験 であり、本実験で期待する3時間程度の粒子径変化を測定し た例は少ない.また,晶析装置の種類によって生成される氷 粒子の大きさや形状が異なる可能性がある.そこで、本研究 室で用いている凍結濃縮システムの製氷部と同構造である スラリーアイス生成装置を使用し, 短時間で Ostwald Ripening の誘発が確認できるかを実験的に検証した.

3.2 実験方法

実験装置を Fig.3 に示す.まず,断熱材で覆ったタンク(カ イスイマレン製, MH-140) に 1wt%の NaCl 水溶液 140L を投 入した. 次に, 撹拌機(阪和化工機製, KP-4001A)にて回転 数 300min⁻¹ で撹拌を行いながら循環型スラリーアイス生成 装置(泉井鐵工所製,シャキットミニ)を用いて3時間製氷 を行った. 粒子径の評価については, 氷発生時を基準として, 15 分毎にシャーレに入れた氷粒子をマイクロスコープ (KEYENCE 製, VHX-500F) にて倍率 200 倍で画像を撮影 した後, Feret 径の計測を行った.

3.3 実験結果と考察

熟成時間別の氷粒子の形状を Fig.4 に示す. メッシュの幅 は200µm間隔である.明らかに,時間とともに粒子が大きく 成長していることが分かる.加えて、生成初期の氷粒子は楕 円形であるのに対し, 熟成が進行すると円形に近づく傾向に ある. また, 図 4(f)に示すように, 熟成 75 分以降は直径 1mm 程度の巨大な氷粒子も観察された.実験を通して, Shirai ら の報告(5)にあるような凝集した氷粒子は観察されなかった. このことは、粒子径の増加が Ostwald Ripening 現象により行 われていることを示唆している.

次に, 熟成時間と平均粒子径の関係を Fig.5 に示す. 時間 経過に伴い,平均粒子径は増加した.本結果について,べき 関数により近似を行うとD = 16.3t^{0.578}となり、決定係数は 0.988 と良好な相関が得られた.

以上より, Ostwald Ripening 現象を利用した, 短時間での 氷粒子増大を行うことが可能であるとの見通しが得られた. しかし、本実験は氷粒子の量が時間変化した上、溶液濃度、 撹拌回転数は一定としたため、未考慮のパラメータが数多く 存在する.したがって、氷粒子成長の定量的データを得るた めには、これらの影響を考慮した実験を行う必要がある.

(c) 60min

Fig. 5 Temporal change of mean particle diameter

4. 再結晶缶による氷粒子径操作

4.1 実験目的

現在実用化されている凍結濃縮システムでは, 氷粒子を生 成後,再結晶缶にて粒子増大を図っている.この操作を用い たプロセスは複雑かつ、設備が大規模なものとなる. そこで、 簡易的に粒子増大が行えるよう,小型の再結晶缶での効果を 明らかにするために装置を設計・製作し、氷粒子径操作を実 験的に検証した.

4.2 実験方法

実験装置を Fig. 6,実験フローを Fig. 7 に示す.本実験で は、純水生成装置 (ADVANTEC 製, RFP841AA) で生成した 純水を用いて,スクロース(ナカライテスク製, Code 30403-84) を質量モル濃度 0.325mol/kg (10°Brix) の濃度に調製した 水溶液を用いた.まず、タンクに投入した溶液を Fig.7 ①の フローにて 12L/min で循環を行った. 掻き取り刃を 360min⁻¹ で回転させ、冷媒温度-10℃にて冷却した. 再結晶缶はRer = 15000 (223min⁻¹) で撹拌しながら冷媒温度-1.3℃ で冷却を 行った.氷が生成されると、Fig.7 ②の循環フローに切り替 えた.氷生成から 30 分経過後,製氷機の冷却温度を−2.7℃ に変更し、伝熱面温度が安定するまで5分間待機した後、溶 液の流量を 5L/min に変更した. これにより、氷充填率(Ice Packing Factor:以下, IPF)の低下を最小限に抑え,再結晶 缶での氷粒子の滞留時間を長くすることができる.また、こ のとき再結晶缶のレイノルズ数も変更し、その後120分間氷 粒子を熟成した.溶液の濃度サンプリングは10分毎,粒子 径の測定は 15 分毎に Fig. 7 ③のフローにて行った.濃度測 定は、デジタル屈折計(ATAGO 製, RX-5000i-Plus)を用い た. 温度等のデータはデータロガー(KEYENCE 製, NR-500, NR-TH08)を使用し、サンプリング周期は0.5秒とした.実 験は 15℃ に雰囲気管理された恒温室内でRer= 15000, 30000, 45000の3条件にて,それぞれ3回行った.

Measuring equipment

Measuring equipment

Measuring equipment

Fig. 7 Experimental flow

4.3 実験結果と考察

ザウター平均径の経時変化を Fig. 8 に示す. Rer = 15000, 30000では、 氷粒子径は時間とともに小さくなった 一方, Rer = 45000では増加する傾向が得られた. このこと から, Rer = 45000以上の領域では,より均一な混合状態と なり,大小の氷粒子の成長および融解速度が増加することに より Ostwald Ripening が促進されているといえる.

Huige によると, IPF は氷粒子径に関係があるとされてい る^{(の}ため, IPF での評価を行った. IPF の経時変化を Fig.9 に 示す. Rer = 15000, 30000の IPF は緩やかに減少したが, Rer = 45000では 120 分で約 2%減少した. ここで, 撹拌動力 P[W]は

$$P = \frac{2\pi N \cdot T}{60}$$
(2)
T: $\Box = \Xi X$ [min⁻¹]

トルク [N・m] N :

で表される.単位時間あたりの氷融解量mmelt[kg/s]は、再結 晶缶の伝熱量0[W]を用いて

$$n_{melt} = \frac{P - Q}{L} \tag{3}$$

で表される. IPF の減少量IPF_dは, 120 分間の融解量を M_{melt} [kg], 全液量を M_A [kg]とすると,

Fig. 8 Temporal change of Sauter mean diameter

Fig. 9 Temporal change of IPF

$$IPF_d = 100 \frac{M_{melt}}{M_A} \tag{4}$$

となる.本式から算出した IPF 減少量と実際の IPF 減少量と の比較を Table1 に示す. Rer = 45000では,約0.13kg の融解 が生じ, IPF の減少量は 1.34% であった.融解の大半が再結 晶缶内で生じているにもかかわらず, ザウター平均径は増加 した.本結果は、粒子径を減少させるよりも、粒子径を増加 させる要因が支配的であることを意味する.

これらのことから, 再結晶缶を用いた撹拌レイノルズ数に よる操作は氷粒子の増大に有効であるとの見通しを得た.し かし、氷粒子のさらなる増大には、IPFや再結晶缶での滞留 時間など、他の因子を考慮した検討が必要である.

Table1 Comparison of IPF decrement				
<i>Re</i> _r [−]	P [W]	Q [W]	<i>IPF</i> decrement (theoretical) [%]	<i>IPF</i> decrement (actual) [%]
15000	0.51	6.12	-1.24	0.56
30000	3.60	6.07	-0.52	0.88
45000	12.30	6.45	1.34	2.00

5. 結言

本稿では、単成分水溶液から生成される氷粒子を増大させ る方法について実験的に検証した.

まず,スラリーアイス生成装置を用いて,Ostwald Ripening 現象の実験的検討を行った.本現象により熟成が行えること を示し、3時間の製氷で平均粒子径は約250µm 増加し、氷粒 子径は熟成時間の0.578 乗に比例することを見出した.

次に、簡易的なシステムにて、粒子増大を目的に、再結晶 缶を用いた氷粒子径操作を行った. 撹拌レイノルズ数を増大 させると、氷粒子の融解および成長速度が増加することによ り Ostwald Ripening が促進されることが明らかとなった. し かし、氷粒子のさらなる増大には、IPFや再結晶缶での滞留 時間などを考慮した操作が必要である.

参考文献

(1)日本フードスペシャリスト協会、"食品の消費と流通" (2008)、建帛社.

(2)瀬口正晴, 八田一, "食品学各論" (2003), 化学同人.

(3)松野隆一, 中村厚三, 古田武, 田門肇, "氷核発生・成長の 機構と凍結濃縮",日本食品低温保蔵学会誌, Vol. 15, No. 1 (1989), pp. 28-33.

(4)P. Pronk, T.M. Hansen, C.A. Infante Ferreira, G.J. Witkamp, "Time-dependent behavior of different ice slurries during storage", International Journal of Refrigeration, Vol. 28, No. 1 (2005), pp. 27-36.

(5)Yoshihito Shirai, Takayuki Sugimoto, Masayuki Hashimoto, Kazuhiro Nakanishi, Ryuichi Matsuno, "Mechanism of Ice Growth in a Batch crystallizer with an External Cooler for Freeze Concentration", Agricultural and Biological Chemistry, Vol. 51, No. 9 (1987), pp. 2359-2366.

(6) N. J. J. Huige, "Nucleation and growth of ice crystals from water and sugar solutions in continuous stirred tank crystallizers," Ph. D. Dissertation, Univ. Eindhoven, The Netherlands (1972).