球状分子および棒状分子のせん断流れの分子動力学シミュレーション

Molecular dynamics simulation of mixtures of spherical and ellipsoidal molecules in shear flows

知能機械システム工学コース 流体工学研究室 1225028 末松 慶紀

1. 緒言

液晶製品を製造する際,その液晶材料は様々な材料を混合 されることで要求された材料特性を実現させている.現在, 液晶モニタへの応用を念頭に置いて,液晶材料は光学的,電 磁気学的な特性が重視されている.しかし,液晶材料の用途 拡大のためには,混合させる材料,混合比の選択による力学 的特性の変化にも着目していく必要がある.また,この液晶 混合材料においては,その内部構造の変化が材料の特性に大 きな影響を及ぼすことが分かっている.そのため,液晶材料 の,せん断,温度の条件の変化に伴う内部構造の変化を調べ ることは,混合材料を用いる上で重要であるといえる.

本研究では、分子動力学法を用いて、球状分子、棒状の液 晶分子の混合系について分子スケールで計算を行い、条件の 変化に伴う内部構造の変化を明らかにすることを目的とす る.

2. 数値計算

本研究の計算では、分子間力の計算にポテンシャルエネル ギーモデルを用いる. 球状分子同士では Lennard-Jones ポテ ンシャルエネルギー^[1]を U_{ij}^{LJ} ,棒状分子同士では Gay-Berne ポテンシャルエネルギー^[2]を U_{ij}^{CB} ,球状分子と棒状分子では 拡張 Gay-Berne ポテンシャルエネルギーを U_{ij}^{EGB} としてそれ ぞれ用いる.また、せん断速度をz方向に、x方向に流れが 生じる様に与える.これにより、球状分子の運動方程式は

$$m^{sphere} \frac{dv_i^{sphere}}{dt} = -\sum_j \frac{\partial U_{ij}^{LJ}}{\partial r} - \sum_k \frac{\partial U_{ik}^{EGB}}{\partial r} -\alpha_3 \boldsymbol{v}_i^{sphere} - \dot{\gamma} \boldsymbol{v}_i^{sphere} \hat{\boldsymbol{e}}_z \tag{1}$$

と表され,棒状分子の運動方程式,角運動方程式はそれぞれ,

$$m^{elipsoid} \frac{d\boldsymbol{v}_{i}^{ellipsoid}}{dt} = -\sum_{j} \frac{\partial U_{ij}^{GB}}{\partial r} - \sum_{k} \frac{\partial U_{ik}^{EGB}}{\partial r} -\alpha_{1} v_{i}^{ellipsoid} - \dot{\gamma} v_{i}^{ellipsoid} \hat{e}_{z}$$
(2)

$$I\frac{d\omega_i}{dt} = -\sum_j \hat{u}_i \times \frac{\partial U_{ij}^{GB}}{\partial \hat{\boldsymbol{u}}_i} - \sum_k \hat{u}_i \times \frac{\partial U_{ik}^{EGB}}{\partial \hat{\boldsymbol{u}}_i} - \alpha_2 \omega_i \quad (3)$$

と表される. ここで, *m* は分子の質量, *I* は慣性モーメント である. また, v_i は速度ベクトル, ω_i は角速度ベクトル, r は 位置ベクトル, $\alpha_1 \sim \alpha_3$ はガウス熱浴法による未定乗数, $\dot{\gamma}$ は せん断速度である. 各ポテンシャルエネルギーはそれぞれ,

$$U^{LJ}(r_{ij}) = 4\varepsilon_{LJ} \left\{ \left(\frac{\sigma_0}{r_{ij}} \right)^{12} - \left(\frac{\sigma_0}{r_{ij}} \right)^6 \right\}$$
(4)

$$U^{GB}(\hat{u}_{i},\hat{u}_{j},r_{ij}) = 4\varepsilon_{GB}(\hat{u}_{i},\hat{u}_{j},\hat{r}_{ij}) \begin{bmatrix} \left\{ \frac{\sigma_{0}}{r_{ij}-\sigma_{GB}(\hat{u}_{i},\hat{u}_{j},\hat{r}_{ij})+\sigma_{0}} \right\}^{12} \\ -\left\{ \frac{\sigma_{0}}{r_{ij}-\sigma_{GB}(\hat{u}_{i},\hat{u}_{j},\hat{r}_{ij})+\sigma_{0}} \right\}^{6} \end{bmatrix} (5)$$

$$U^{EGB}(\hat{u}_{i},r_{ij}) = 4\varepsilon_{EGB}(\hat{u}_{i},r_{ij}) \begin{bmatrix} \left\{ \frac{\sigma_{0}}{r_{ij}-\sigma_{EGB}(\hat{u}_{i},r_{ij})+\sigma_{0}} \right\}^{12} \\ -\left\{ \frac{\sigma_{0}}{r_{ij}-\sigma_{EGB}(\hat{u}_{i},r_{ij})+\sigma_{0}} \right\}^{6} \end{bmatrix} (6)$$

と表される. ここで、 σ_0 は、ポテンシャルエネルギーの谷の 位置を決めるパラメータである. また、本研究においては、 式(4)~式(6)中の ε_{LJ} 、 ε_{GB} 、 ε_{EGB} に着目し、その影響を議論す る. ε_{GB} 、 ε_{EGB} はそれぞれ、

$$\varepsilon_{GB}(\widehat{\boldsymbol{u}}_{i}, \, \widehat{\boldsymbol{u}}_{j}, \, \widehat{\boldsymbol{r}}_{ij}) = \varepsilon_{0}^{GB} \varepsilon_{1}^{\nu}(\widehat{\boldsymbol{u}}_{i}, \, \widehat{\boldsymbol{u}}_{j}) \varepsilon_{2}^{\mu}(\widehat{\boldsymbol{u}}_{i}, \, \widehat{\boldsymbol{u}}_{j}, \, \widehat{\boldsymbol{r}}_{ij})$$
(7)

$$\varepsilon_{EGB}(\hat{\boldsymbol{u}}_{i},\,\hat{\boldsymbol{r}}_{ij}) = \varepsilon_{0}^{EGB} \left[1 - \chi' (\hat{\boldsymbol{u}}_{i} \cdot \,\hat{\boldsymbol{r}}_{ij}) \right]^{\mu} \tag{8}$$

となり、ポテンシャルエネルギーの谷の深さを表す. この中 でも、 ϵ_{LJ} 、式(7)中の ϵ_0^{GB} 、式(8)中の ϵ_0^{EGB} は、それぞれの ϵ の 大きさを何倍するかを定める項であり、これらを変化させる ことで、それぞれのポテンシャルエネルギーの谷の深さの大 きさを変化させることができる.

また,式(5)~(6)中のσ,そして式(7)のε1はそれぞれ,

$$\sigma_{GB}(\hat{\boldsymbol{u}}_{i}, \hat{\boldsymbol{u}}_{j}, \hat{r}_{ij}) = \sigma_{0} \left[1 - \frac{\chi}{2} \left\{ \frac{\left(\hat{\boldsymbol{r}}_{ij} \cdot \hat{\boldsymbol{u}}_{i} + \hat{\boldsymbol{r}}_{ij} \cdot \hat{\boldsymbol{u}}_{j}\right)^{2}}{1 + \chi(\hat{\boldsymbol{u}}_{i} \cdot \hat{\boldsymbol{u}}_{j})} \right\} \right]^{-\frac{1}{2}} + \frac{\left(\hat{\boldsymbol{r}}_{ij} \cdot \hat{\boldsymbol{u}}_{i} - \hat{\boldsymbol{r}}_{ij} \cdot \hat{\boldsymbol{u}}_{j}\right)^{2}}{1 - \chi(\hat{\boldsymbol{u}}_{i} \cdot \hat{\boldsymbol{u}}_{j})} \right\} \right]^{-\frac{1}{2}}$$
(9)

$$\sigma_{EGB}(\hat{\boldsymbol{u}}_i, r_{ij}) = \sigma_0 \left[1 - \chi (\hat{\boldsymbol{u}}_i \cdot \hat{\boldsymbol{r}}_{ij})^2 \right]^{-\frac{1}{2}}$$
(10)

$$\varepsilon_1(\hat{\boldsymbol{u}}_i, \, \hat{\boldsymbol{u}}_j) = \left[1 - \chi^2 (\hat{\boldsymbol{u}}_i \cdot \hat{\boldsymbol{u}}_j)^2\right]^{-\frac{1}{2}} \tag{11}$$

と表され,式(9),式(11)のχは,

$$\chi = \frac{\left(\frac{l}{d}\right)^2 - 1}{\left(\frac{l}{d}\right)^2 + 1}$$
(12)

1

となる. また, 式(10)の*χ*は,

$$\chi = \frac{\binom{l_i}{d_i}^2 - 1}{\binom{l_i}{d}^2 + 1}$$
(13)

となり,式(12)の l_{d} ,そして式(1)の $l_{d_{i}}$ は棒状分子のアスペクト比である.この棒状分子のアスペクト比を α とおく.

本研究では、分子は棒状、球状それぞれ 160 個を計算セル に入れ、計算セルの大きさは分子の無次元数密度 $\rho^* = 0.375$ となる様に設定する.また、無次元時間刻み幅は $\Delta t^* = 1.0 \times 10^{-4}$ とし、周期境界条件は Lees-Edwards 周期境界条件^[3]、数 値積分には Leap-Frog 法を用いる.無次元温度 T^* , SLLOD 法 により与えた無次元せん断速度 $\dot{\gamma}^*$ 、アスペクト比α、そして $\varepsilon_0^{GB}/\varepsilon_0^{EGB}$ 、 $\varepsilon_{LJ}/\varepsilon_0^{EGB}$ を変化させ、内部構造に与える影響を調 べる.

3. 結果

図 3.1 に, $\dot{\gamma}^* = 1.5$, $T^* = 3.0$, $\alpha = 3.0$ の条件下で行った計算の, 無次元時間 $t^* = 400.0$ における計算セルの様子を示す.

Fig.3.1 Snapshots for the calculations of each ε

また,球状分子と棒状分子がどれ程混合しているかを評価 する手段として,式(14)に示す棒状分子-球状分子相関関数 G を用いる.

$$\rho G(r) = \frac{\langle n(r) \rangle}{4\pi r^2 dr} \tag{14}$$

ここで, n(r)はある棒状分子からrからdrの範囲にある球 状分子の数, ρ は計算セルの球状分子の数密度を表している. よって,この関数は棒状分子よりr離れた,drの厚みがある 空間内の球状分子の数密度と,計算セルの球状分子の数密度 の比を,全ての棒状分子について平均をとったものとなる. 例として,図 3.2 に $\dot{\gamma}^*$ = 1.5, T^* = 3.0, α = 3.0, $\epsilon_{LJ}/\epsilon_0^{EGB}$ = 1.0, $\epsilon_0^{GB}/\epsilon_0^{EGB}$ = 1.0,の条件下での, t^* = 400.0における相関 関数を示す.この関数の第一ピークの値の大きさで混合度を 判断することができる.この第一ピークの値は大きくなるに 従い混合した構造を示し,小さくなるに従い分離した構造を 示す.

Fig.3.2 Correlation function

図 3.3 に $\varepsilon_0^{GB}/\varepsilon_0^{EGB}$, $\varepsilon_{LJ}/\varepsilon_0^{EGB}$ を横軸に,縦軸に混合度を表 す相関関数 G の第1ピークをとった散布図の結果を,図 3.4 に横軸に時間,縦軸に棒状分子の方向の秩序度をとったもの を示す.また,計算時間 $t^* = 400.0$ の計算セルの様子を図 3.3 に示す.

相関関数 G の第一ピークは, その値が大きいほど混合した 構造を、小さいほど分離している構造を示す.図 3.1、図 3.3 より, $\varepsilon_0^{GB}/\varepsilon_0^{EGB}$, $\varepsilon_{LI}/\varepsilon_0^{EGB}$ の値が大きくなるほど,Gの第一 ピークの値が小さくなっており、分離した構造をとっている. すなわち,同種の分子同士の εの影響が異種の分子間におけ る ε よりも大きくなるに従って、より分離した構造をとるこ とが分かった. それぞれのモデルにおける εは, その値が大 きくなるに従って、それに伴い分子が近づいた時の斥力、分 子が離れた時の引力が大きくなる.よって、そのモデルの ε が大きいときには引力項が、小さいときには斥力項が強くは たらいていると考えられる.また,図 3.4 に示した秩序度は, 棒状分子がどれほど揃っているのかを示す関数である、この 値は0から1の範囲で値をとり、0に近いほど棒状分子の方 向は揃っておらず、1に近い程棒状分子の方向が揃っている と言える. 図 3.1, 3.4 より, $\varepsilon_0^{GB}/\varepsilon_0^{EGB}$, $\varepsilon_{LI}/\varepsilon_0^{EGB}$ の値が大き くなるほど秩序度の値が増しており、その増え方はEGB/EGB の方が大きいことが分かる.これは、同種のポテンシャルエ ネルギーにおける εの影響が大きくなることで分子が分離し, そのことにより棒状分子の間に球状分子が入りにくくなっ たため、棒状分子の方向が揃いやすくなったからであると考 えられる.これらの傾向は棒状分子のアスペクト比,与えた せん断速度,温度を変化させた場合についても同様であった. 以上より,同種のポテンシャルエネルギーの ε の影響が大き くなるに従い異種分子は分離,棒状分子の向きは揃いやすく なり, 異種のポテンシャルエネルギーの εの影響が大きくな るに従い, 異種分子は混合, 棒状分子は揃いやすくなること がわかった.

4. 結言

本研究は、液晶混合材料について、材料の分子の物性値、 与える条件の変化が内部構造に与える影響について、分子動 力学を用いて明らかにすることを目的とした.得られた結果 を以下に示す.

・同種のポテンシャルエネルギーの εの影響が大きくなるに 従い異種分子は分離しやすくなり,異種のポテンシャルエネ ルギーの εの影響が大きくなるに従い異種分子は混合しやす くなることがわかった.

・同種のポテンシャルエネルギーのεの影響が大きくなるに 従い棒状分子の向きは揃いやすくなり, 異種のポテンシャル エネルギーのεの影響が大きくなるに従い棒状分子は揃いや すくなることがわかった.

Fig.3.4 Reference of ε and order function

文献

- (1) 泉聡志, 増田裕寿, "機械・材料設計に生かす実践分子 動力学シミュレーション"
- (2) Cleaver, Douglas J., et al. "Extension and generalization of the Gay-Berne potential" Physical Review, vol.54, 559-567 (1996)-
- (3) 森下徹也, "拡張系 MD 手法のアドバンスなレビュー と最近の発展【第6回:番外編】-非平衡分子動力学シ ミュレーション-"