Structural optimization of rib-skin integrated CFRP wing for UAV

知能機械システム工学コース

先端機械・航空材料工学研究室 1225039 豊見山 敬樹

1. 緒言

近年,災害時の緊急支援や観測などへの小型 UAV (無人 機)の災害対応への活用が注目されている.UAV は大小様々 なものが実用化されており,大型のUAV の翼は航空機と同 じ構造がとられている.一方,小型UAV は重量が小さく, 低速で飛行する場合,スキンに CFRP を適用するだけでも十 分な強度になる.しかし,軍事用など一部の用途を除いて翼 のCFRP 化等の研究開発はあまりおこなわれていない. 災害支援への適用を考えると,大きな揚力に耐え得る強度が 必要であるが,従来の設計,製作方法では材料のコストが上 がり,組み立ても容易ではないため,市町村単位で所持する ことが難しくなる.そこで,リブをストリンガに置き換え, スキンと一体化した翼構造を提案する.これにより成形,組 み立てコストも減らすことができる.本研究では流体解析お よび構造解析によって得られた CFRP 翼の翼重量,翼端たわ み,翼厚変形の応答曲面を作成し,多目的最適化を行った.

2. 解析

2.1 解析モデル

先行研究で用いた解析モデルを図1に示す.このモデルは (有)サーマル工房 Urban グライダーの主翼を1.5 倍したモ デルとなっており,翼根の翼厚は34.5mm である.本研究で は、ペイロードを含む機体重量28kg,定常飛行時,最大対気 速度120km/h,更に悪天候時の最大瞬間対気速度208km/h に も耐え得る翼の設計を目指した.流体解析から圧力分布を求 め、次にそれを用いて構造解析を行い,翼の重量,翼端たわ み,翼型の変形量を算出した.

Fig. 1Dimension of wing(Unit : mm)

2.2 流体解析

流体解析の翼弦長 *l* に対して x 方向 80*l*, y 方向 80*l*, z 方 向 50*l*,計算領域界面からの翼弦前縁までの距離は x 方向 40*l*, y 方向 40*l*, z 方向 0*l* であり,片翼のみの計算を行なった.飛 行高度を sea Level で想定し,空気密度 1.162kg/mm³,動粘性 15.52m²/s とし,差分法により非圧縮解析を行った.

解析には汎用ソフトウェアである Abaqus/CFD を用いた. 乱流モデルには航空機の解析でよく用いられる Spalart-Allmaras を使用した.境界条件は流入面に x 方向 63.3m/s, y 方向 1.55m/s を与え,流出面に圧力 0 を与えた. 翼表面には 壁面上での流体速度を 0 とするすべりなしを与え,その他の 面には流入面と同じ一様流を与えた.そのときの翼面圧力分 布を求めた.

2.3 構造解析

作成した翼モデルに対し、0.4mm 厚の CFRP を適用してリ ブ方向に 0.2mm 厚、1~5mm 角のハット型補強材をそれぞれ 4,6,8,10,12,24,48 本入れたモデルに対して構造解析を行った. 補強材の配置の位置は、翼をz方向に等分に分けた位置に入 れた.境界条件として、翼根元を変位、回転共に0として、 翼面に重力加速度として 9.8m/s² と流体解析から得られて圧 力分布を翼表面に与えた.構造解析に使用した CFRP の物性 値を表1に示す.

Table 1 Material Properties of CFRP

E1(GPa)	E ₂ (GPa)	E₃(GPa)	V 12	V 1 3
67.4	52.9	10	0.096	0.3
V 2 3	G12 (GPa)	G13 (GPa)	G 2 3 (GPa)	p(g/cm ³)
0.3	3.89	3.89	2	1.37

2.4 最適化手法

本研究では、補強材の本数(n=4,6,8,10,12,24,48),サイズ (h=1,2,3,4,5),を設計変数とし、総当りで解析を行い、それぞ れのサンプルで翼重量 fw,翼端たわみ ft,翼型変形量 fs の応 答を求めた.ここで翼厚変形量は変形前に同じ(x,z)座標を持 つ上下面の y 方向変位量の差から求められ、その最大値の絶 対値を fs とした.この時,翼根から1つめの折り目で座屈が 生じたため、上反角が変わっていため、2 つめの折れ目の座 屈の影響の無い範囲の翼厚変形量を計算では用いた.

2 次曲面を解析結果に当てはめて,設計変数の関数として 目的変数 fw, ft, fs の応答曲面を求めた.このとき, n<10, h=1 では座屈により非線形性が非常に強かったので設計変数 範囲として $10 \le n \le 48$, $2 \le h \le 5$ とした.設計変数範囲で の目的変数の中央値の fw_0 , ft_0 , fs_0 を用いて目的変数の応 答値を正規化し,それらを組み合わせて2種類の目的関数を 以下のように作成した.

$$OBJ1 = \frac{fw}{fw_0}a + \frac{ft}{ft_0}(1-a)$$

$$OBJ2 = \frac{fw}{fw_0}a + \frac{fs}{fs_0}(1-a)$$
(1)

ここで,aは重み関数であり,0-1の範囲で掃引して目的関数 を最小化する設計変数を求めることでパレート解を求めた. なお, 翼端たわみftと翼型変形量fsの応答は互いに似た傾向 を示したため, 3目的の最適化は行なわなかった.

3. 結果および考察

3.1 翼の変形

図2に5mm角の補強材を24本入れた翼の解析前と解析後 の翼断面の様子を示す.翼の上反角が変わるz=630の位置で, いずれのパターンにおいても,翼断面がつぶれるような変形 をした.これは,翼のたわみによる局所座屈が生じたためで あると考えられる.図3に解析前,解析後の翼断面の様子を 示す.いずれのパターンにおいても,翼のたわみによる局所 座屈以外の翼型の大きな変形は見られなかった.また,リブ なしの構造でも翼のねじれは見られなかった.

Fig.2 Wing before and after analysis (z = 630, n = 24, h = 5)

Fig.3 Wing after analysis (n = 24, h = 5)

3.2 目的関数の応答

図4に片翼重量の応答を示す.補強材の本数および断面積 をそれぞれ大きくすればするほど重量増加が見られた.例え ば、5mm角,48本ではスキンのみの480gと比較しても約3 割の増加が見られたが、両翼での重量増加は280gと想定機 体重量 20kgと比較してもそれほど大きな値ではないと考え る.

図5に翼端たわみの応答を示す.補強材のサイズと本数を 増やせば増やすほど断面の歪みが小さくなって実質的に剛 性が増加し翼端たわみが小さくなる事が分かる.設計変数範 囲での応答の変化は150~300mmとなったが,片翼長が約 1500mmであるため,300mmの翼端たわみは想定内といえる.

図6に最大翼厚変形量の応答を示す.全ての応答において、 補強材の本数よりも補強材のサイズが翼厚変形に大きく効 くことが分かった.補強材の効果が小さいときの翼厚変形量 は58mmとなっており、元の翼厚 34.5mmよりも大きくなっ た.これは、折り目で局所座屈が生じた影響であるため、座 屈が生じない工夫をする必要がある.本研究の意図する、リ ブによる翼型変形の抑制の評価には不適当である.そこで、 上反角の変わり目に部分的にスキンを厚くすることで局所 座屈を防ぐ前提で z =1000~1300付近での翼厚変形量を調 べた.図7に1000~1300における最大翼厚変形量の応答を示 す.図より補強材のサイズが1mmの時は翼厚変形が非常に 大きいが、2mm以上では翼厚変形量が5mm以下に抑えるこ とが出来ることが分かる.また、8本以上の補強では本数の 増加に伴い、変形を抑えることができ、4mmかつ12本以上 では翼型の変形を1mm以下に抑えることが分かった. 以上から,最適解を求めるための設計変数範囲として,補 強材サイズ 2-5mm,本数 10-48 本を用いることにした.

Fig.4 Relationship between weight and stiffener size and number

size and number

Fig.6 Relationship between Thickness deformation and stiffener size and number

3.2 多目的最適化

図8に片翼重量, 翼端たわみ, 翼厚変形の応答から計算した 応答曲面を示す.図より, 片翼重量と他の2つの応答曲面の 振る舞いは互いにトレードオフの関係にあることが分かっ た.また, 翼端たわみと翼厚変形の応答曲面が似ているため, 翼重量と翼端たわみ, 翼重量と翼厚変形をそれぞれ組み合わ せて多目的最適化を行なった.

(c) Response surface of wing-tip deflection Fig.8 Response surfaces of weight, wing-tip deflection and thickness deformation

図9にOBJ1の多目的関数から得られたパレート解を示す. 図より翼重量と翼端たわみは互いにトレードオフの関係で あることが分かる.重量が中間付近の値を取る解(リブの無 い場合と比較して翼重量が 12%増加する場合に相当)を最適 解と選ぶと,fw=540g付近の解となる.このときの重み,補 強材のサイズ,補強材の本数はそれぞれa=0.8,h=4.4,n= 26であった.重量と翼厚変形の応答を図 10に示す.図9と 図 10から最小の翼端たわみを与える解は最小の翼厚変形を 与えることも分かった.パレート解について設計変数である 補強材の本数を横軸に,サイズを縦軸にとったグラフを図 11 に示す.これにより,10-36本まで変化することが分かる. しかし、22本より小さい場合は全て10本であり、この時の 翼端たわみは194mm以上となった.より、設計変数は必要 となる補強材の本数は22本以上、補強材のサイズは4mm以 上を選択すればよいことがわかる.

Fig.10 Relationship between weight and thickness deflection for Pareto solutions (OBJ1)

Number of stiffener[-]

Fig.11 Relationship between size and number of stiffeners for Pareto solutions (OBJ1)

図 12 に OBJ2 から得られたパレート解を示す. 図より翼 重量と翼厚変形量は互いにトレードオフであることが分か る. 重量が中心付近の値を取る解を最適解と選ぶと fw=540g 付近の解であり重み,補強材のサイズ,補強材の本数はそれ ぞれ, a = 0.8, h = 4.6, n = 23であった. 設計変数である補強 材の本数を横軸に,補強材のサイズを縦軸にとってパレート 解を描いたものを図 13 に示す. このときの最適な本数は 10-41 本まで変化するが,最適な補強材サイズは 4.6-5mm と変 化が小さいことがわかった.また,翼厚変形を 0.5mm 以内に 抑えたい場合は本数を15本以上にすればよいことがわかる. 以上から重量と翼厚変形,翼端たわみを抑える最適な設計 パラメータはh = 4.6, n = 23であることが分かった.

Fig.12 Pareto solutions obtained by multi-objective optimization (OBJ2)

Fig.13 Relationship between size and number of stiffeners for

Pareto solutions (OBJ2)

4. 結言

本研究では, 強風でも運用可能な小型 UAV 用の低コスト・ リブー体成形 CFRP 翼の実現を目的として, 補強材のサイズ および配置の最適化を検討した.その結果, 今回想定した最 大瞬間対気速度 208km/h, 翼長 3m の機体では, 高さおよび 幅が 4.6mm 以上のハット型補強材 23 本をリブの代わりとし て用いることでリブの無い場合と比較して翼重量が 12.5% 増 加するが, 翼厚変形と翼端たわみを十分な許容範囲に収める ことが可能であることが分かった.

今回用いたモデルでは折れ目で座屈が生じたので、今後は 座屈を起こさない翼デザインを行なうか、折れ目のみにリブ を導入し、座屈を起こさないモデルについて最適化を行ない たい.また、スパーを導入した場合についても検討を行ない たい.

文献

- (1) 鷺森友和,"小型 UAV 翼の最適化設計",高知工科大学 2017 年度修士学位論文(2018)
- (2) 松尾裕一, ながれ, 35, pp. 2367-245 (2016)