Multi-segment control of a continuum manipulator

知能機械システム工学コース

機械・航空システム制御研究室 1225051 松本 明浩

1. 緒言

日本の生産年齢人口は、少子高齢化の進行によって 1995 年をピークに減少しており、総人口も 2008 年をピークに減 少に転じている⁽¹⁾. また、将来推計によると、総人口は 2030 年には 1 億 1,913 万人、2053 年に 1 億人を割り、2060 年に は 9,284 万人にまで減少すると見込まれている. 同様に、生 産年齢人口は 2030 年には 6,875 万人、2060 年には 4,793 万 人にまで減少するとされている⁽²⁾. 現在、農業における自動 化・省人化が進んでおり、今後の生産年齢人口の減少に伴い、 人間からロボットを隔離することが難しい分野でも自動化・ 省人化を進める必要があり、ロボットが人間と協力して作業 する機会が増加すると考えられる.

産業用ロボットに多く使用される多関節マニピュレータは 剛性が高く、高精度で高速な動作が可能であるが、剛性の高 さ故に侵襲性が高く、周囲の物や人間と接触したときに及ぼ す危険性が高いことから人間と協力して作業することは困 難である.それに対して柔軟な素材そのものをマニピュレー タとして用いる連続体マニピュレータ⁽³⁾と呼ばれるものが 存在する.多関節マニピュレータに比べて柔軟・軽量に設計 することができ、侵襲性が低くなる.周囲の物や人間と接触 しても及ぼす危険性が低くなり、人間と協力した作業が可能 となると考えられる.

本研究では複数セグメントの連続体マニピュレータを用いた侵襲性が低く、周囲の物や人間と接触しても危険の少ない、 農業における収穫作業のように人間からロボットを隔離することが難しい分野でも使用できるロボットの開発を目的とする.連続体マニピュレータの高負荷条件や複数セグメントでの運用に関する研究は少ないため、本論文では動作方向を限定した2 セグメントの連続体マニピュレータの実験機を製作し高負荷条件での動作について検証する.

2. 動作方向を限定した実験機について

本研究での連続体マニピュレータを図 1,連続体マニピュ レータの座標系を図 2 に示す.製作した実験機を図 3 に示 す.連続体マニピュレータは明確な関節が存在しないため, 代わりにセグメントと呼ばれる動作単位で構成される.図1 のように曲率が一定の部分を1つのセグメントとし,1セグ メントあたり2自由度となる⁽³⁾.製作した動作方向を限定し た実験機は1セグメント目をワイヤ1とワイヤ3,2セグメ ント目をワイヤ2とワイヤ4の巻き取り・繰り出し操作によ って動作させる.座標軸の変換で同次座標系を求め,先端の 位置を求めることができる.同次座標系は以下の手順で求め た.

- z軸周りにγ_iだけ回転する. (回転行列Rot(z, γ_i))
- 手順①後の座標系から見た先端の座標(x_i, 0, z_i)へ平行 移動する. (平行移動行列*Trans*(x_i, 0, z_i))
- ③ y軸周りにβ_iだけ回転する. (回転行列Rot(y, β_i))
 各手順の変換行列は以下のようになる.

$$Rot(z, \gamma_i) = \begin{bmatrix} \cos \gamma_i & -\sin \gamma_i & 0 & 0\\ \sin \gamma_i & \cos \gamma_i & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

$$Trans(x_i, 0, z_i) = \begin{bmatrix} 1 & 0 & 0 & x_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & z_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2)

$$Rot(y,\beta_i) = \begin{bmatrix} \cos\beta_i & 0 & \sin\beta_i & 0\\ 0 & 1 & 0 & 0\\ -\sin\beta_i & 0 & \cos\beta_i & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)

同次変換行列T_iは

 $T_i = Rot(z, \gamma_i) Trans(x_i, 0, z_i) Rot(y, \beta_i)$ (4) となる. 手順①後の座標系から見た先端の座標 $(x_i, 0, z_i)$ を求 める. 連続体マニピュレータの 1 セグメント分の長さを $l[mm], i セグメント目の先端の角度\beta_i[rad]とする. 動作時の$ $曲率を一定として曲率半径を<math>r_i[mm]$ とすると図 4 より

$$l = r_i \beta_i \tag{5}$$
$$x_i = r_i (1 - \cos \beta_i) \tag{6}$$

$$z_i = r_i \sin \beta_i \tag{7}$$

式(5)から式(7)より

$$x_i = \frac{l}{\beta_i} (1 - \cos \beta_i) \tag{8}$$

$$\mathbf{z}_i = \frac{1}{\beta_i} \sin \beta_i \tag{9}$$

となる. (i + 1)セグメント目の先端の角度を $\beta_{i+1} = 0$ [rad]としたとき図4より

$$\begin{aligned} x_{i+1} &= l \sin \beta_i \\ z_{i+1} &= l \cos \beta_i \end{aligned} \tag{10}$$

となる.

Fig. 1 Continuum manipulator

同次変換行列 T_i および式(8)から式(11)より各セグメントの先端位置を求めることができる.各ワイヤの操作量 q_n [mm]について求める.iセグメント目の先端の角度 β_i のとき各ワイヤの曲率半径を R_n [mm]とするとワイヤが描く円弧の長さは

となり、式(5)および式(12)、式(13)よりワイヤの操作量
$$q_n$$
は
 $q_n = \pm R_0 \beta_i$ (14)

となる.実験機の構造上(i + 1)セグメント目のワイヤ操作量 にはiセグメント目の操作量を含める必要がある.よって $q_n = \pm R_0 \beta_{i+1} \pm R_0 \beta_i$ (15)

$$q_n = \pm \kappa_0 p_{i+1} \pm \kappa_0 p_i$$

$$\geq k_0 \delta.$$

3. 製作した実験機の動作確認

3.1 実験方法

製作した実験機を以下の表 1 に示す条件の場合について ワイヤを操作し動作させた.図5から図7に動作のイメージ を示す.

7

3.2 動作結果

おもりによる負荷がない場合での動作を図 8 から図 10 に 示す.負荷がない場合では動作のイメージと比較すると各動 作条件を満たしている.式より求めたワイヤ操作量で1 セグ メント目のみでの動作や 2 セグメント目のみの動作を行え ることが確認できた.

Fig. 8 Manipulator operation (Weight 0g, $\beta_1 = 45$ [deg], $\beta_2 = 0$ [deg])

Fig. 9 Manipulator operation (Weight 0g, $\beta_1 = 0$ [deg], $\beta_2 = 45$ [deg])

Fig. 10 Manipulator operation (Weight 0g, $\beta_1 = 45[\text{deg}], \beta_2 = 45[\text{deg}]$)

おもりによる負荷がある場合での動作を図11から図13に示 す.動作のイメージと比較すると動作条件を満たせていない. 1 セグメント目の動作を行う場合での誤差は大きく,1 セグ メント目の動作を行わない場合での誤差は小さい.モーショ ンキャプチャを用いて,正確な形状データを取得し比較する 必要がある.

Fig. 11 Manipulator operation (Weight 120g, $\beta_1 = 45$ [deg], $\beta_2 = 0$ [deg])

Fig. 12 Manipulator operation (Weight 120g, $\beta_1 = 0[\text{deg}], \beta_2 = 45[\text{deg}]$)

Fig. 14 Manipulator operation (Weight 120g, $\beta_1 = 45[\text{deg}], \beta_2 = 45[\text{deg}]$)

4. 結言

2 セグメントの連続体マニピュレータの動作方向を限定し た実験機を製作した.ワイヤ操作量を求め,手動によりワイ ヤ操作を行い,おもりによる負荷がない場合は曲率一定の動 作が可能であることを確認した.今後の課題としてモータに よりワイヤを操作し,自動で動作を行うことやモーションキ ャプチャを用いて,マニピュレータへの負荷による形状の変 化について考察する必要がある.また,形状の変化を考慮し たモデル化を行う必要がある.

謝辞

本研究は、高知県プロジェクト「IoP (Internet of Plants)が 導く Next 次世代型施設園芸農業への進化プロジェクト」の 助成により行っています.

文献

- 総務省, "平成 29 年度版 情報通信白書 人口減少社会の課題と将来推計", http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h29/h tml/nc141110.html(参照日 2019 年 1 月 17 日)
 国立社会保障・人口問題研究所, "日本の将来推計人口(平成 29 年推計)",
 - hppt://www.ipss.go.jp/ppzenkoku/j/zenkoku2017/pp_zenkoku2017.asp (参照日 2019 年 1 月 17 日)
- (3) Ian D. Walker, "Continuous Backbone "Continuum" Robot Manipulators ", Hindawi Publishing Corporation, ISRN Robotics Volume 2013, Article ID 726506, 19 pages
- (4) 徳永貴昭, "複数セグメントの連続体マニピュレータの 三次元解析と試作機での検証", 高知工科大学修士論文, (2018)
- (5) 内山勝, "ソフトロボティクス", 日本ロボット学会誌, Vol.17, No.6(1999), pp.756-757