卒業論文要旨

細径光ファイバによる CFRP 積層板の硬化モニタリング

Measurement degree of cure of CFRP Laminate using embedded small diameter optical fiber

システム工学群

先端機械・航空材料工学研究室 1210037 大西 智樹

1. 緒言

熱硬化性 CFRP(炭素繊維強化プラスチック)を成形する際 の成形条件は品質に大きな影響を与える.現在まで,最適な 成形条件を求めるには試行錯誤法が使用されており,これが FRP 製品の開発コストを増加させる一因となっている.これ を解決する手法として,成形中の FRP の内部状態をその場 モニタリング手法に関する研究がこれまでに行われている¹⁾.

我々はこれまで、埋め込み光ファイバセンサを用いた FRP の、その場硬化モニタリング手法に関する研究を行ってきた ²⁾ . その結果、本手法を用いることで成形中の樹脂硬化度を 精度良く得られることが示されている.一方で、先行研究よ り、FRP プリプレグの硬化度測定においては、測定精度が低 下する場合が確認されている³⁾ .これまでの研究で使用さて きた光ファイバセンサは、一般的なφ125μmのものであり、 薄いプリプレグのプライ厚(約 70μm)と比較すると大きい. そのため、光ファイバが埋め込まれた際に、先端に大きな樹 脂リッチ領域を形成することが分かっている.特にプリプレ グを用いた成形では、高い繊維含有率の高強度部材が要求さ れるため、大きな樹脂リッチは欠陥となり得る.さらに、光 ファイバ先端の樹脂リッチ領域でボイドが発生し、硬化度測 定の精度を低下させる場合があることも報告されている.

そこで、本研究では光ファイバセンサの埋め込み性を向上 させるために、φ 80μmの細径光ファイバセンサを使用した. 細径光ファイバセンサによる硬化度測定の可能性を明らか にし、埋め込み性についての評価を行った.

2. 実験方法

2.1 フレネル反射型光ファイバセンサによる硬化度測定

フレネル反射型光ファイバセンサでは、測定された屈折率 変化から硬化度を算出する.図1に本センサによる屈折率測 定の概略図を示す.光源から照射された光は、サーキュレー タを通り光ファイバの端部に到達する.端部では、ガラスと 樹脂の屈折率の違いによりフレネル反射が生じる.反射光は 再びサーキュレータを通って受光器へと到達する.以下に示 す式(1)および(2)²⁾を用いることで、測定光量から樹脂の屈 折率変化*Δn*が算出できる.

$$\frac{\Delta n}{n_{eff} + n_s} = \frac{\eta_s (1 + \eta_s) + \eta_{air}^2 \nu \pm (1 + \eta_s) \sqrt{\eta_s^2 + \eta_{air}^2 \nu}}{1 - (\eta_s^2 + \eta_{air}^2 \nu)}$$
(1)
$$\eta_{air} = \sqrt{R_{air}} = \frac{n_{eff} - 1}{n_{eff} + 1}, \quad \eta_s = \sqrt{R_s} = \frac{n_{eff} - n_s}{n_{eff} + n_s}$$
(2)
$$\nu = \frac{\Delta I}{I_{air} - I_b} \approx \frac{\Delta I}{I_{air}}$$

ここで ΔI は反射光量の変化、 I_{air} は空気からの反射光量、 n_{eff}

は光ファイバの有効屈折率, *n*_sは基準条件(本研究では,基準温度*T*_s,硬化度 0)での樹脂の屈折率を表している.硬化度は,式(1)および(2)より求められた屈折率変化曲線から,以下に示す式(3)を用いることで算出される.

$$\alpha = \frac{\Delta n(\alpha, T) - \frac{dn}{dT}(0)(T - T_s)}{\Delta n_s(1, T_0) + \left\{\frac{dn}{dT}(1) - \frac{dn}{dT}(0)\right\}(T - T_0)}$$
(3)

ここで、 $\Delta n(\alpha,T)$ は硬化度 α 、温度Tの場合の屈折率変化. $dn/dT(\alpha)$ は屈折率の温度依存を示す.

Fig.1 Schematic view of refractive index measurement by Fresnel-based optical fiber sensor

Fig.2 Setting method to hot press machine

2.2 CFRP プリプレグの硬化度測定

本研究では、デシケータで24時間以上乾燥させた、6 cm四 方の CFRP プリプレグを10 枚積層した.積層した CFRP プ リプレグの5枚目と6枚目の間に図2のように80 µmの細径 光ファイバセンサと熱電対を埋め込み、真空状態で光量と温 度を計測した.光ファイバセンサを埋め込む方向は積層板の 繊維方向と平行に埋め込んだ. 積層板はホットプレス機で加熱, 0.5MPa で加圧した. 昇温速度は 2.0℃/min で, 25℃(室温)から 220℃まで昇温させた. 反射光量の計測間隔は1秒で行った.

3. 実験結果および考察

3.1 樹脂の硬化度測定

図3に直径80 μ mの光ファイバを用いて測定した樹脂の硬 化度曲線を示す.図中には、センサを用いた測定結果に加え て、DSC (Differential Scanning Calorimetry) による硬化度曲 線も示している.図より、直径80 μ mの光ファイバを用い た場合でも、硬化度を精度良く測定できていることがわかる.

Fig.3 Degree-of-cure curve of epoxy resin measured by 80 and 125µm optical fiber sensors.

3.2 CFRP プリプレグの硬化度測定

図4に CFRP プリプレグのホットプレス成形におけるセン サ光量の測定値から,式(1),(2),(3)を用いて算出した硬化度曲 線を示す.図4には,比較対象として先行研究⁽²⁾で得た125 µmの高屈曲光ファイバを用いた結果も示す.また,算出に 用いたプリプレグの硬化度計算パラメータを表1に示す.

Fig.4 Degree-of-cure curves of CFRP prepreg

Table 1. Calculation parameters of degree-of-cure of CFRP prepreg

dn/dT(0)	dn/dT(1)	dn/dT(1)	$\Delta n(1,T_0)$	T ₀
	$(T < T_0)$	$(T > = T_0)$		
-0.00031	-0.000281	-0.000346	0.0406	160

図 4 より, 直径 $80 \mu m$ の光ファイバセンサによって測定 された硬化度曲線は, 直径 $125 \mu m$ の光ファイバセンと同じ 曲線となることがわかった. これより, 直径 $80 \mu m$ の光フ ァイバセンサでも従来のセンサと同等の測定が可能である ことがわかった

4. ファイバの埋め込み性

先行研究の結果から、125µmの光ファイバを埋め込んだ際、 その先端部分で樹脂リッチが生じ、ボイドの発生も確認され ている.そのため、細径光ファイバセンサを使用することに よって、樹脂リッチおよびボイドの抑制を試みた.評価方法 として、埋め込み部の断面を光学顕微鏡によって観察した. また、先行研究よりセンサ先端部に発生するボイドを反射光 のスペクトルから検出できることが明らかにされている.そ のため、反射光量とともにスペクトルの測定も行った.2.1 節に示した光学系で、反射光を1×2カプラで受光機と光ス ペクトラムアナライザに分光し、それぞれ測定を行った.

まず,図4に先行研究で得た結果のひとつ,断面に小さい ボイドと大きいボイドが存在する場合を断面写真(a)と, 125µmと80µmの光ファイバをそれぞれ埋め込んだ硬化度曲 線も図5(b)(c)としてまとめる.また,細径ファイバの成形時 の3点でのスペクトルも(d)で示す.図5の(a)を見ると,明 らかにファイバ先端の樹脂リッチの体積が125µmの光ファイ バに比べて80µmの光ファイバの方が小さい事が分かる.ま た,今回の実験では80µmの光ファイバの先端にはボイドの 存在は確認できなかった.このことから,少なくとも今回の 実験では大きなボイドの発生を抑えることができ,埋め込み 性が向上していることが期待できる結果となった.

また,図5の(b)の赤丸で示したようにボイドが発生すると, その影響で硬化度曲線が乱れていることも先行研究で確認 されている.

細径ファイバの硬化度曲線にも,(c)の B 点で示したよう に同じタイミングで硬化度曲線の乱れが確認できるが(d)で 示すようにボイドの影響でのスペクトルの変化は見られな いことから,ボイドは発生していないことが分かる.よって, 局所曲げ等,他の要因による硬化曲線の乱れであるといえる.

(a) Cross-sectional photo

(b) Degree-of-cure curve (125 μm optical fiber)

(c) Degree-of-cure curve (80 µm optical fiber)

(d) Reflect spectra from sensor embedded in CFRP at three points(80 µm optical fiber)

Fig.5 Cross-sectional photograph of resin rich near fiber tip and degree-of-cure curve ($125 \ \mu m$ and $80 \ \mu m$ optical fiber)

5. 結言

本研究では, FRP 成形時の硬化度を測定する為のシステム, フレネル反射型光ファイバセンサを用いた CFRP プリプレグ のリアルタイム硬化度測定システムに用いるファイバを直 径 125 µmの高屈曲光ファイバから直径 80 µmの細径光ファイ バに変えても硬化度の計測が可能かを確認した後,埋め込み 性を評価する指針のひとつであるボイドの発生を抑えるこ ととファイバ先端に発生する樹脂リッチの抑制を試みた.そ の結果以下の知見を得られた.

- (1)125 µmの高屈曲光ファイバから直径 80 µmの細径光ファイ バに変えた場合,125 µmの高屈曲光ファイバに比べ,精度 は同等の測定能を持っており,DSC や125 µmの高屈曲光フ ァイバを利用した時に得られる硬化度曲線とほぼ一致す る硬化度曲線を得られた.このことから,CFRP プリプレグ の硬化度の測定に利用することは可能であると言えた.
- (2) 細径光ファイバを用いることで樹脂リッチ部のサイズを 大きく抑制することが出来た.
- (3)ボイドによる反射光への影響は確認されず、一定の波形 のスペクトルが確認されたため、細径光ファイバ先端には ボイドが発生しないことが確認された.
- (4) 細径光ファイバによる測定では、ファイバ挿入部での局 所曲げの状態が変化した事による反射光の乱れが見られ た.この原因は、125 µmの高屈曲ファイバに比べ、細径フ ァイバは光損失が大きいためである.よって、細径ファイ バを用いる場合は、硬化度測定中に大きく曲げない、また

は曲げ状態を変化しないように工夫する必要がある.

文献

- 高坂達郎 "複合材料成形戯実の最前線, 3.近年の FRP 成形モニタリング技術とその応用" 2018, pp819-825
- (2) 藤岡玄紘"修士論文「フレネル型光ファイバセンサによる3次元形状 FRPの硬化度測定システムの開発」" 高知工科大学大学院,2018,pp11-16
- (3) 須賀絃貴"修士論文「FRPプリプレグのその場硬化 度測定手法の改良」"高知工科大学大学院, 2019, pp3-8
- (4) 高野義之"学士論文「細径光ファイバを用いた FRP の 硬化度測定」"高知工科大学,2020, pp4-8