卒業論文要旨

ネマティック液晶の2重円筒間せん断流れにおける 分子配向欠陥の発生メカニズム

Mechanism of molecular orientation defects in nematic shear flow between concentric cylinders

システム工学群 流体工学研究室 1210043 鬼丸 直也

1. 緒言

近年,液晶の力学特性を利用したデバイスの開発が行われ ている.その中の一つに液晶発電軸受がある.同心2重円筒 間をネマティック液晶で満たし2 重円筒に相対的に回転を させる.この時,円筒間の液晶流動により液晶の分子配向場 に歪みが生じる.液晶分子配向場の歪みは、フレクソエレク トリック分極と呼ばれる巨視的な分極を発現することが知 られている.このメカニズムを利用すれば、潤滑と発電が同 時に実現できると考えられている.先行研究において、同心 2 重円筒間液晶せん断流れによる内外円筒間の電位差の測定 が行われ,時間的に不規則な電位差が発生することが報告さ れている(1). 可視化実験から流動中の分子配向場に欠陥構造 と呼ばれる不規則な分子配向構造が現れることが明らかに されており、不規則な電位差の発生の原因となっていると考 えられる.したがって液晶流における巨視的分極値を制御す るためには、分子配向欠陥構造の抑制が重要であると考えら れる.

そこで、本研究では同心2重円筒間せん断流れの液晶分子 配向場を3次元で数値的に解析し、配向欠陥構造の発生メカ ニズムを明らかにし、その抑制方法について調べることを目 的とする.

2. 数値計算

解析にはネマティック液晶中の分子配向挙動を表す Leslie-Ericksen 理論を利用する.液晶分子の回転挙動を示す 角運動方程式を以下に示す.

$$\mathbf{n} \times \left\{ -\frac{\partial F}{\partial \mathbf{n}} + \nabla \cdot \left(\frac{\partial F}{\partial \nabla \mathbf{n}} \right) + \gamma_1 \mathbf{N} + \gamma_2 \mathbf{A} \cdot \mathbf{n} \right\} = \mathbf{0}$$
(1)

ここで、**n**はディレクタであり、棒状の液晶の長軸方向の 局所的な平均配向を表す単位ベクトルである.粘性係数 $\gamma_{1, \gamma_{2}}$ は Leslie 粘性係数 α_{2} , α_{3} , α_{5} , α_{6} と以下の関係がある.

$$\gamma_1 = \alpha_3 - \alpha_2 \tag{2}$$

$$\gamma_2 = \alpha_6 - \alpha_5 \tag{3}$$

Fはディレクタ場の歪みによって生じる液晶分子場の弾性 エネルギー, A は変形速度テンソル, N はディレクタ流体の 相対角速度ベクトルである.図1に同心2重円筒間流れの計 算領域および座標系を示す.同心2重円筒の内筒を回転させ, 円筒間の液晶分子にせん断流れを印加した場合の液晶分子 配向挙動の数値シミュレーションを行う.

Fig.1 Calculating area

 r_{in} , r_{out} はそれぞれ内筒外筒半径であり r_{in} =2.5mm, r_{out} =3.0mm とする. z方向の計算領域は L=2.5mm とし て周期境界条件を与える. 円筒座標系で式(1)を展開し た後,内外円筒間隔 H,内筒表面の周速度 $v_{\theta}(r_{in})$,代表 粘性係数 γ_1 ,平均弾性係数 \overline{K} (= $(K_1 + K_2 + K_3)/3$)を用いて無 次元化を行うと粘性力と分子弾性力の比を表す無次元量で あるエリクセン数,

$$Er = \frac{\gamma_1 H v_\theta(r_{in})}{\overline{K}} \tag{4}$$

が式中に現れる、本研究では Erを計算パラメータとする.

*Er*のγ₁, *H*, *R*が定数であるため、 $v_{\theta}(r_{in})$ の値のみで決まる. 速度場については内筒に $v_{\theta}(r_{in})$ を与え、液晶流の速度分布はニュートン流体における 2 重円筒間クエット流れで近似し、以下に示す.

$$v_{\theta}(r) = \frac{E_r \bar{K}}{\gamma_1 H} \frac{r_{in}}{r_{in}^2 - r_{out}^2} \frac{r^2 - r_{out}^2}{r}$$
(5)

境界条件として,内外筒面に存在するディレクタは垂直配 向材により面の法線方向に強固定配向されているものとす る.すなわち

$$\vec{n}(r_{in}) = \vec{n}(r_{out}) = (1, 0, 0)$$
 (6)

内外筒面を除く全てのディレクタは円筒座標の θ , ϕ を用いて表される. 初期条件として、微小ノイズを与えた液晶分子配向場とするので数値計算では、乱数により微小ノイズを与えている. 微小ノイズを δ_{θ} , δ_{ϕ} とし、 $-0.1^{\circ} \leq \delta_{\theta} \leq 0.1^{\circ}$, $-0.1^{\circ} \leq \delta_{\theta} \leq 0.1^{\circ}$ の一様乱数とする. 内外筒表面を除く全てのディレクタは以下の式で表される.

$$\vec{n}(r) = \begin{pmatrix} \cos(\delta_{\theta}) \cdot \cos(\delta_{\phi}) \\ \cos(\delta_{\theta}) \cdot \sin(\delta_{\phi}) \\ -\sin(\delta_{\theta}) \end{pmatrix}$$
(7)

数値計算法として空間離散化には二次精度中心差分を,時間積分には二次精度ルンゲクッタ法を用いた.計算格子幅は r 方向を 100 分割, θ 方向を 3000 分割,z方向を 500 分割と する.時間ステップ Δt =0.01s とした.エリクセン数は100 \leq Er \leq 250とし,50 刻みで数値シミュレーションを行った.液 晶材料として,タンブリング液晶の1種である 4-octyl-4'cyanobiphenyl(8CB)を用いる.34°Cにおける 8CB の粘性係数 および弾性係数の値をそれぞれ表 1.1, 1.2 に示す.

Table 1.1 Leslie viscosity coefficient of 8CB at degrees Celsius

Tuble 1.1 Lebite	e viscosity coeff	lefent of ocd at	
α2	α_3	α_5	α_6
(Pa · s)	(Pa · s)	(Pa • s)	(Pa · s)
-7.19×10 ⁻²	4.34×10 ⁻²	6.35×10^{-2}	3.50×10^{-2}
Table 1.2 Mo	odulus of elastic	ity of 8CB at deg	grees Celsius
K_1	Ì	K ₂	<i>K</i> ₃
(N)	()	N)	(N)
1 1 1 1 1			

3. 計算結果及び考察

図2(a)~(e)は*Er*=200の場合の*t*=120, 130, 140, 150, 2000に おけるディレクタの*z*方向成分 n_z をそれぞれ示す. $|n_z|<0.1$ の 領域については透明にしている. *t*=120において, n_z が有限値 を持つ領域が内円筒近傍で線状に現れ始める. 時間の経過と ともに, n_z の有限値領域は外円筒側へと拡大する. -方, *t*=140 において,外円筒近傍でも n_z の有限値領域が不規則に発生し 始め,その後,拡大する. これらは、せん断面内(*r*- θ)で回転 していたディレクタがせん断面内におけるディレクタ場の 歪みエネルギーを低減するために、せん断面外へと逃れる Out-of-Plane現象による. $n_z>0とn_z<00$ のOut-of-Plane現象は確率 的に等価である. そのため, $n_z>00$ の領域と $n_z<00$ の領域がランダ ムに発生する. さらに時間が経過すると、 n_z が同符号の領域 同士が結合し、異符号の領域がz方向に交互に現れるような 分布に至る. これら異符号の領域の境界が欠陥領域であり、 Out-of-Plane現象がその発生要因であることが分かる.

Out-of-Plane現象の時間変化を調べるために、ディレクタの z方向成分の絶対値[n_z]の空間平均量の時間変化を図3に示す. いずれのErにおいても、[n_z]は振動しながら増加している.ま た、Erが大きいほどOut-of-Plane現象が短い時間で発生し始め る.これは、Erが大きいほど円筒間のせん断速度が大きく、 ディレクタの回転速度が高いことに起因する.すなわち、デ ィレクタのr-の面内の回転によるディレクタ場の歪みエネル ギーの増加が短時間で起こり、Out-of-Plane現象の発生につな がる.

以上の結果より、同心2重円筒間液晶せん断流れにおける 欠陥の発生はディレクタがせん断面外へと逃れるOut-of-Plane現象に起因しており、異符号のn₂領域の境界に欠陥が形 成されることが明らかとなった.また、Erが大きいほど(内 筒の回転速度が大きいほど)欠陥構造が短時間で形成される ことが分かった. 電場や磁場などの外場を利用してOut-of-Plane現象が1方向に発生させることができれば, 流路全体が 同符号の領域で埋め尽くされ, 異符号境界が存在しなくなり, 欠陥の抑制につながると期待できる.

Fig.3 Time transition of the unit direction vector in the z-axis direction of liquid crystal molecules

4. 結言

本研究では、ネマティック液晶の2重円筒間せん断流れの 数値シミュレーションを行い、せん断流れを印加することに よって生じる配向欠陥構造の発生メカニズムを調べた.その 結果を以下にまとめる.

・異符号の領域の境界が欠陥領域であり, Out-of-Plane 現象 がその発生要因である.

・Er が大きいほど Out-of-Plane 現象が短い時間で発生する. ・電場や磁場などの外場を利用して Out-of-Plane 現象を1方 向に発生させることができれば,流路全体が同符号の領域で 埋め尽くされ,異符号境界が存在しなくなり,欠陥の抑制に つながると期待できる.

文献

(1) 伊東良祐, 辻知宏, 蝶野成臣, "二重円筒間液晶せん断 流れにおける巨視的分極に関する実験", 日本機械学会 流体工学部門講演会講演論文集 (2014)