二方向偏心を有する鉄筋コンクリート造パイルキャップに関する解析的研究

パイルキャップ	圧縮強度	FEM 解析
ひずみ分布	応力伝達	

 1210118
 佐竹 功丞*1

 指導教員
 鈴木 卓

1. はじめに

敷地境界線一杯に建設される建物では、柱芯と杭芯が偏 心して配置される場合が多くみられる。しかし、偏心を有す

るパイルキャップに関する研究事例は少なく、特に建物の隅柱に位置する二方向偏心を有する鉄筋コンクリート造(以下, RC と呼称)パイルキャップに関する研究例は田中ら¹⁰のもののみである。

現在の鉄筋コンクリート構造計算規準²⁾(以下, RC規準 と呼称)では、図1に示すストラット・タイモデルに基づく 二方向偏心を有するパイルキャップの構造設計法が紹介さ れている。この手法は、上部の柱芯から下部の杭芯にかけて 形成される斜め圧縮ストラットの水平反力をパイルキャッ プ底面の鉄筋が負担するとされている。しかしながら、この 手法では、柱芯と杭芯の二方向偏心に伴いパイルキャップ 底面に大量の鉄筋が必要となり、現実的な設計法とは言い 難いことが指摘されている³⁾。

そこで本研究では、柱芯と杭芯が水平二方向に偏心を有 する RC 造パイルキャップの三次元有限要素法(以下, FEM と呼称)解析を実施した。本論では、解析結果から既往の耐 力評価法の妥当性の検討結果を述べるとともに、パイルキ ャップ内部の応力状態を述べる。

2. 解析対象試験体

2.1 試験体

試験体は RC 規準【設計例 4】²⁾を参考に 1/5 縮尺である。 試験体の形状および載荷条件を図 2 に,試験体の断面詳細 を表 1 に示す。載荷条件は 3.1 節に詳細を示す。

柱断面は 200×200mm, 杭径は 350mm およびパイルキャ ップの寸法は 400×400×440mm とした。柱芯および杭芯の 水平二方向の偏心距離 e は 106mm であり, 柱芯から二方向 基礎梁先端のローラー支点までの距離 l_B は各 900mm であ る。

試験体変数は基礎梁断面形状である。Base 試験体では, 基礎梁断面はRC規準に示される設計例を基に200×400mm とし,梁有効せいdは340mmとした。一方のFlat 試験体で は,基礎梁断面は扁平梁を想定して350×220mmとし,梁 有効せいdは160mmとした。また,各部材の主筋および補 強筋は使用規定²⁾を満足する数値を仮定した。コンクリート の材料特性を表2に鉄筋の材料特性を表3に示す。

2.2 終局耐力評価

基礎梁の曲げ終局耐力およびせん断終局耐力は文献 4)に

|--|

		RC 規準	Base	Flat
2 方向偏心距離 e (mm)		566	106	
基礎梁	b×D (mm)	800×2,000	200×400	350×220
	d (mm)	-	340	160
	引張鉄筋比 (%)	-	0.95	1.97
	あばら筋比 (%)	-	0.6	1.55
柱	b×D (mm)	1,000×1,000	200×200	
	主筋比 (%)	-	2.14	
	帯筋比 (%)	-	0.4	
杭	φ (mm)	1,600	350	
	主筋比 (%)	-	0.95	
	帯筋比 (%)	-	0.4	
パイル 寸法 (mm)		2,000× 2,000×2,000	400×400×440	
イヤツノ	はかま筋比 (%)	-	0.2	

示される式(1)および式(2)によりそれぞれ算定した。一方の 二方向偏心を有するパイルキャップの終局耐力は前述の田 中らの提案式(式(3)~式(6))に従い算定した 1。式中の記 号の詳細は文献を参照されたい。

<梁の曲げ終局耐力 4>

$$M_u = 0.9A_t \sigma_y d \tag{1}$$

<梁のせん断終局耐力 *>

$$Q_{su} = \left\{ \frac{0.068p_t^{0.23}(18+F_c)}{\frac{M}{(Qd)} + 0.12} + 0.85\sqrt{p_w\sigma_{wy}} \right\} bj$$
(2)

$$N_p = {}_A N_u + {}_B N_u \tag{3}$$

$$A^{N_u} - N_{B}$$
(4)
$${}_{B}N_u = min(N_c, N_y, N_b)$$
(5)

$$N_c = B\sigma_B \cos^2 \alpha, \quad N_y = \frac{\sqrt{2}\sigma_y a_t}{\tan \alpha}, \quad N_b = \frac{\sqrt{2}f_u a_t}{\tan \alpha}$$
 (6)

本研究では,制御荷重として杭軸力を採用する。上記の終 局耐力の計算結果を載荷条件から得られる下記の式(7)から (10)に代入して杭軸力に変換した。

<Base 試験体の変換式>

$$N = \frac{\sqrt{2}l_B}{e} \cdot \frac{M_u}{l_P} = \frac{\sqrt{2}l_B}{e} Q_{su} \tag{7}$$

$$N = \frac{l_B}{(l_b - \sqrt{2}e)} N_p \tag{8}$$

<Flat 試験体の変換式>

$$N = \frac{e + \sqrt{2}l_B}{-e + \sqrt{2}l_B} \cdot \frac{M_u}{l_P} = \frac{e + \sqrt{2}l_B}{-e + \sqrt{2}l_B} Q_{su}$$
(9)

$$N = \frac{e + \sqrt{2}l_B}{e} N_p \tag{10}$$

表 4 に杭軸力に換算した各部材の終局耐力計算結果を示 す。Base 試験体の杭軸力換算値は梁の曲げ耐力が1,742kN, 梁のせん断耐力が 1,838kN およびパイルキャップの圧縮耐 力が 1.125kN となった。一方の Flat 試験体の杭軸力換算値 は梁の曲げ耐力が 1,776kN, 梁のせん断耐力が 1,687kN およ びパイルキャップの圧縮耐力が 1,048kN となった。両試験 体ともに耐力計算結果から想定される破壊形式はパイルキ ャップの圧縮破壊型と判断された。

3. FEM 解析

3.1 解析概要

解析は市販の有限要素法解析プログラム FINAL を用いた。 図3に試験体の要素分割を示す。

コンクリートは原則として六面体要素でモデル化し,円 形断面の杭は六面体要素および五面体要素を用いてほぼ等 価な断面積を有する八角形断面に仮定した。基礎梁主筋を 除く鉄筋はコンクリートの六面体要素に埋め込み鉄筋とし てモデル化した。一方の基礎梁主筋は線材要素とし、基礎梁 主筋の付着を考慮するためにコンクリートと鉄筋の要素間 にライン要素を定義した。また、パイルキャップ内の基礎梁

十十 业时 唐土 南井

衣2 コングリートの材料特性								
			RC 規準	Ba	Base&Flat			
			柱	柱	その	他		
圧縮強度		(N/mm^2)	40	40	24			
弹性係数		(kN/mm ²)	-	30.5	24.7	/		
圧縮強度時ひずみ		(μ) -		2,205	1,98	6		
付着強度		(N/mm ²)	-	-	2.33	3		
表3鉄筋の材料特性								
		RC 規準	Base&Flat					
		主筋	梁主筋	他主筋	補強	筋		
降伏強度	(N/n	nm ²)	345	390	295	295	;	
弾性係数	(kN/r	nm ²)	205	205	205	205	;	
表4 各部材の終局耐力計算結果(杭軸力換算値)								
					Bas	e Fla	ıt	
各終局耐力時 の杭軸力 (kN)		梁曲げ耐力		1,74	2 1,77	76		
		梁せん断耐力		1,83	8 1,68	87		
		パ	イルキャップ圧縮耐力		1,12	5 1,04	48	
			∇	, 8				

主筋端部は機械式定着を想定してライン要素を剛とした。 また、載荷点周辺の六面体要素は鋼材とした。

試験体の境界条件は柱頭部がピン支点、二方向の基礎梁 先端がローラー支点および杭先端が自由端である。載荷条 件は杭芯に強制変位を単調載荷とした。載荷方式は,単調載 荷とし、杭芯脚部に鉛直上向きの強制変位を与えた。

3.2 材料構成則

本論におけるコンクリートおよび鋼材の材料構成則は米 澤ら5の論文を参考にした。コンクリートは、等価一軸ひず みに基づく直交異方性体とし、ひび割れは一つの積分点に 対して合計9方向のひび割れが考慮できる非直交分散ひび 割れモデルを用いた。圧縮側の主応力-等価一軸ひずみ関 係は多軸応力による強度および靭性の向上を表現できる修 正 Ahmad モデルを用いた。引張側に関しては、ひび割れま では線形を仮定し、ひび割れ後は出雲らのモデルにc=0.8(c: モデル係数)として,若干の引張軟化特性を考慮した。ひび 割れ面のせん断伝達特性には、ひび割れと直交方向のひず みを関数とした Al-Mahaidi モデルを用いた。コンクリート の破壊条件は Otosan の4パラメータモデルにより決定した。

鉄筋の応力-ひずみ関係はバイリニアモデルを仮定し, 鉄筋とコンクリートの間の付着応力-すべり関係は Elmorsi モデル仮定した。

4. 解析結果

4.1 杭軸カー鉛直変位関係および損傷状況

図4に各試験体の杭軸力-鉛直変位関係を示す。同図では、解析における最大耐力点を〇で、2.2節において示した梁曲げ耐力を点線で、梁せん断耐力を一点鎖線で、パイルキャップ終局耐力を二点鎖線でそれぞれ示している。

Base 試験体では変位 0.2mm で基礎梁とパイルキャップの 境目に曲げひび割れが発生し,変位 1.4mm で基礎梁あばら 筋の一部が降伏した。最大耐力点付近である変位 2mm で基 礎梁全体のあばら筋の降伏に伴う耐力低下が確認された。

Flat 試験体では、変位 0.2mm で基礎梁とパイルキャップ 境目に曲げひび割れが発生し、変位 2.4mm で柱脚付近パイ ルキャップにおけるコンクリートの圧縮軟化と基礎梁の引 張側主筋の一部が降伏した。変位 2.8mm では柱脚付近パイ ルキャップにおけるコンクリートの圧縮軟化が確認され、 基礎梁の引張側主筋の降伏がみられた。その後、最大耐力点 である変位 3.6mm 付近では、柱脚付近パイルキャップにお けるコンクリートの圧縮軟化のさらなる進行が確認された。

各試験体の最大耐力到達後におけるパイルキャップのコ ンクリートのひび割れ性状を図 5 に示す。同図で黒色の箇 所はコンクリートの圧縮軟化部を示している。

両試験体ともに基礎梁における上端の曲げひび割れおよ び側面の斜めひび割れの発生が認められた。また,パイルキ ャップでは柱下部から梁下端にかけての斜めひび割れおよ び柱下部から杭上部にかけての鉛直ひび割れの発生が確認 された。

Base 試験体では最大耐力から荷重低下にかけて基礎梁あ ばら筋の降伏が顕著であったことから、当該試験体の破壊 形式は梁のせん断破壊と判断された。Flat 試験体では最大耐 力から荷重低下にかけて柱脚付近のパイルキャップにおけ るコンクリートの圧縮軟化が顕著であったことから、当該 試験体の破壊形式は柱脚付近パイルキャップの圧縮破壊と 判断された。

両試験体ともに解析の最大耐力はパイルキャップの終局 耐力の計算値と比べて高い値を示した。

4.2 コンクリートのひずみ分布

各試験体の柱芯断面における最大耐力到達時におけるコ ンクリートの最大主ひずみ分布を図 6 に示す。図は両試験 体の最大主ひずみを段階的に色分けしており,色の濃い部 分は高い引張ひずみを示している。

パイルキャップ上端に着目すると、両試験体ともに基礎 梁とパイルキャップの境界および基礎梁と柱の境界付近に 高い引張ひずみの発生が確認された。また、基礎梁の取り付 いていない側のパイルキャップの端部に高い引張ひずみの 発生が認められた。これはパイルキャップ内における基礎 梁主筋端部を剛接合とした影響によるものと考えられる。 一方でパイルキャップ下端に着目すると、両試験体ともに 鉄筋の降伏ひずみ(1,439µ)を超える引張ひずみの発生は確 認されなかった。

4.3 コンクリートの最小主応力分布

各試験体の最大耐力時におけるコンクリートの最小主応 力分布を図7に示す。同図は基礎梁上端の引張側鉄筋重心 位置および基礎梁下端の圧縮側鉄筋重心位置を表している。 両試験体ともに最小主応力を段階的に色分けしており,色 の濃い部分は高い圧縮応力を示している。

梁上端位置では両試験体ともに柱直下に高い圧縮応力が 生じている。一方で梁下端位置では梁下端と柱直下に圧縮 応力が生じている。特に Flat 試験体において柱直下の応力 のうち一番高い圧縮応力は柱芯付近に位置していることが 確認された。文献 2)で示されているストラット・タイモデ ル(図1参照)では,基礎梁下端位置において高い圧縮応力 を示すのは杭芯位置である。このことから文献 2)で示され ているモデルと異なる応力伝達をしていると考えられる。

5. まとめ

本研究では,基礎梁断面形状を変数とした二方向偏心を 有するパイルキャップの三次元 FEM 解析を実施し,当該試 験体の損傷状況および内部応力状態を検討した。本研究で 得られた知見を以下に示す。

- Base試験体の最終破壊形式は基礎梁あばら筋の降伏に 伴うせん断破壊と判断された。一方のFlat 試験体の最 終破壊形式は基礎梁曲げ降伏後の柱脚付近パイルキャ ップの圧縮破壊と判断された。
- 2) 梁の断面形状の差異に拘らず、各試験体の最大耐力は 文献1)に示されたパイルキャップ圧縮耐力の計算値と 比べて高くなる傾向を示した。
- 両試験体ともにパイルキャップ下端のコンクリートに 生じる引張ひずみは鉄筋の降伏ひずみと比べて低い。
- 両試験体ともにパイルキャップの内部において柱芯付 近に高い圧縮応力の発生が確認された。

(梁上端位置)

(梁下端位置) Base 試験体 Flat 試験体 図 7 最大耐力時におけるコンクリートの主応力分布

5) 上記 3)および 4)に示した解析結果の傾向は二方向偏心 を有するパイルキャップの設計法として採用されてい るストラット・タイモデルの想定と異なるものである。

参考文献

- 田中麻美,他2名:柱と杭が偏心した基礎接合部の合 理的な設計方法の開発(その3),日本建築学会大会学 術講演梗概集,C-2,構造IV,pp.423-424,2006.7
- 日本建築学会:鉄筋コンクリート構造計算規準・同解
 説,2018.12
- 3) 「鉄筋コンクリート構造計算規準・同解説」Q&A:RC 規準 Q&A: http://news-sv.aij.or.jp/kouzou/s48/answer.htm 閲覧日:2021年2月2日
- 4) 日本建築学会:鉄筋コンクリート構造保有水平耐力計 算規準(案)・同解説,2016.4
- 5) 米澤健次,他2名:地震荷重を受ける場所打ち杭頭接 合部の3次元非線形 FEM 解析,コンクリート工学年 次論文集, Vol. 29, No. 3, pp. 271-276, 2007.7