小型 UAV を対象とした風洞の3次元計測環境構築に関する研究

Study on Development of 3D Measurement Environment of Wind Tunnel Targeted at Small UAV

システム工学群

航空エンジン超音速流研究室 1210099 武田 明樹

1. 序論

近年,小型UAV(Unmanned Air Vehicle) は災害現場での被 災者の自動検出など様々な活用が期待されている.よって著 者らは小型UAV 周りの三次元流れを詳細に調べるために風 洞実験及びCFD 解析を行う計画である.ただし風洞実験で は,使用する風洞の出力可能な風速,測定部の寸法等により, 計測対象の翼,機体模型のサイズに限界がある。

よって本研究では、小型 UAV サイズの航空機を計測対象 とした使用が予想される風洞について、設置した試験翼表面 の圧力分布を計測することにより、風洞で扱える模型のサイ ズについて調査を行う.

本研究で使用した風洞を図1に示す.風洞は図1に示すように1m×1mの吹出口を有する開放型風洞であるが,風洞の 主流乱れを抑えるため、吹出口から下流に風洞壁を設置している.風洞壁を図2に示す.

Fig.2 Wind Tunnel Wall.

西山の先行研究⁽¹⁾では CFD 解析の結果により, 翼弦長 150mm 以下の翼で, 翼幅方向 1m のうち壁面から 150mm 以 上離れた位置であれば風洞壁の左右側壁面及び上下壁面の 影響が小さいことが示された.本研究では実際に風洞実験を 行うことにより,左右側壁面及び上下壁面の影響について調 査を行うことを目的とする.

2. 翼スパン方向の翼面圧力計測

2.1. 実験概要

風洞壁設置時の翼面圧力分布を測定部の片端から中央部 まででそれぞれ計測することにより,風洞壁設置の干渉を評 価した.

2.2. 実験方法

図 1 に示すように吹出口中央で(X,Z)=(0,0)[m]となる座標 軸 X, Z, 図 2 の手前側側壁面で Y=0 となる座標軸 Y を設定 した.(X,Y,Z)=(0,0.5,0.35)[m]にL字ピトー管の全圧測定孔を 設置し,主流の全圧p_t[Pa]と静圧p_s[Pa]を計測,その差から動 圧 q[Pa]を求め,流速を導出した.

(X,Z)=(0.5,0)[m]に試験翼翼弦中心を設置し,風洞主流速度 は 10m/s とした.測定対象の試験翼は,翼弦長 140mm,翼型 NACA0012 の二次元翼とした.また試験翼を翼幅 1500mm で 作成し,風洞測定部の横幅 1000mm の範囲に対し,試験翼を スパン方向に移動させることにより,計測部端部から中央部 までの圧力分布を測定した.作成した試験翼と静圧測定孔 (以下「圧力孔」と記述)の加工位置の模式図を図 3 に示す.

風洞中央(Y=500mm)での計算と,側壁面からの距離と迎角の組み合わせによる実験ケースを表1に示す.

Table. 1 Cases of experiment and calculation

1		
	$\alpha = 0^{\circ}$	$\alpha = 10^{\circ}$
Y=1[mm]	A-1	A-2
50	B-1	B-2
100	C-1	C-2
150	D-1	D-2
200	E-1	E-2
300	F-1	F-2
500	G-1	G-2
Calculation (500)	CFD-1	CFD-2

流れは左右対称性があるため、計測範囲は片側壁面 (Y=1mm)から中央(Y=500mm)までとした.

図 3 に示すように圧力孔は前縁からの距離と翼弦長の比 x/c[-]が0から0.9の間に加工しており,互いの干渉を避ける ため主流方向に対し斜めに配置している.よって圧力は個々 の圧力孔が風洞壁面より所定の距離となる位置で計測した.

圧力の計測には Scanivalve 社の圧力スキャナ DSA3217/ 16x を用い,サンプリング周期 0.5[s],計測時間 10[s]で 20 個 のデータを取得した. その平均値をその点での静圧 *p*[Pa]と し,以下の式(1)から圧力係数*C*_pをもとめた.

$$C_p = \frac{p - p_s}{q} \tag{1}$$

3. 結果及び考察

図 4, 図 5 に迎角α = 0°の時の側壁面の干渉が予想される ケース (A, B, C) と干渉が少ないと予想されるケース (D, E, F, G) の計測結果と, 測定部中央での計算結果⁽¹⁾を示す. 図 6, 図 7 に迎角α = 10°の時の側壁面の干渉が予想されるケ ース (A, B, C) と干渉が少ないと予想されるケース (D, E, F, G) の計測結果と, 測定部中央での計算結果⁽¹⁾を示す.

Fig. 5 Cp distribution in chord direction ($\alpha = 0^{\circ}$).

図4で計測位置 A-1, B-1, C-1 では背面側と腹面側で異 なる分布を示し,計算結果とも異なる値であった.よって 迎角の設定を誤ったため,もしくは側壁面の影響を受けた ことのどちらが測定値の異なる原因か判別できなかった.

図6で計測位置 A-2, B-2, C-2 では背面側前縁で負圧が 計算値よりも小さくなった.これは風洞壁側壁面の境界層 による主流速度低下の影響を受けているからであると考え られる.

以上から風洞壁の干渉を受けずに計測が行える範囲は壁 面から150mmより中央側であると考えられる.

4. 結論

風洞壁設置時の翼面圧力分布を測定部の片端から中央部 までそれぞれ計測した.測定結果より風洞壁設置時の左右壁 面,上下壁面の測定値への影響を調査し,風洞壁の干渉を無 視できる範囲は壁面から 150mm より中央側であると考えら れる.

ただし,迎角 $\alpha = 0^{\circ}$ において背面と腹面で圧力係数が異なる分布を示したので,再度実験を行うことで風洞壁の干渉をより正確に考察したい.

また、今回の実験では迎角10°までの計測を行ったため、 上下壁面の影響を調査できなかった.よって10°より大きい 迎角の条件で計測、計算を行うことにより、上下壁面の影響 の調査を行っていきたい.

今後の方針として、3次元翼を対象に実験することで、翼 端周りの空力特性が正確に測定可能であるか調査を進めた い.

文献

 西山和希, "風洞の活用方法に関する研究", 高知工科 大学卒業論文, 2020.