原子間力顕微鏡を用いた SBR の熱劣化解析

1 緒言

19世紀半ばから第二次世界大戦までの100年にわたり、ゴ ムの原料は「天然ゴム」が主体であった.しかし、戦後、ゴ ム需要の急激な増加や,高分子化学および石油化学の飛躍的 進歩に伴い,汎用合成ゴム,特殊合成ゴム,ゴムラテックス 等の合成ゴムが次々に誕生・発展を遂げ、現在では、それら が原料ゴムの主流を占めている. そして世界で毎年 1500 万 トンの膨大な量の原料ゴムが消費されている.特に,この20 年間の産業発展は著しいものがあり、ゴム材料やゴム製品に も大きな影響を与えている.ゴム製品では、用途の範囲がさ らに広がっており、自動車,車両,空港,宇宙,工業用品,建 築・土木、海洋、スポーツ・レジャー、医療、粘着剤・接着 剤などあらゆる分野で使用されている.

これらの産業における急速な技術革新に伴い、原料ゴムや ゴム製品に対する要求が一段と厳しく、より高度になってい る. 例えば、ゴムの機械的強度,耐熱性、耐油性、耐寒性、 耐久性, 耐薬品性などの性質の高性能化が求められている(1). これらゴムの高性能化には,「様々な配合で合成したゴムの 特性を評価しながら、高性能ゴムの合成法を確立する」とい った探索的な研究開発が必要となるが、そのような研究開発 の重要な指針を得るためには、ゴム劣化に伴う構造変化や機 械的特性の変化をミクロな観点から明らかにする必要があ る.

材料の微視的な構造を観察するための代表的な手法に、原 子間力顕微鏡(Atomic Force Microscope; AFM)⁽²⁾が挙げられ る. AFM は、試料局所領域の構造情報だけでなく、力学的応 答も得られるという点で大きな特長を持つ. そこで本研究で は、AFM を用いて SBR の熱劣化現象をミクロな視点から理解 することを目的とした. AFM により, 試料加熱に伴うゴム試 料表面の局所的な構造変化と力学特性の変化を同時に観察 し、両者の相関から材料や製品開発に有用な熱耐性ゴムの設 計指針を得ることを最終目標に設定した.

2 実験方法

実験試料には、超音波カッターで厚さ 0.2 mm に切り出し た SBR(大同ゴム株式会社提供)を用いた. 切り出した試料は, 観察前に蒸留水で5分間の超音波洗浄を行った.

AFM 観察には、OXFORD INSTRUMENT 社製の Cypher VRS を用 いた. 測定モードはダイナミックモード(3)であり、カンチレ バー振動振幅の変調量を検出信号に用いる振幅変調 AFM (Amplitude modulation; AM-AFM)を採用した.

SBR の熱劣化追跡では、表面同一視野の領域に対して、加 熱に伴う構造の変化を Topograpy 像として, また力学特性の 変化を位相像として同時に観察した.

システム工学群

極限ナノプロセス研究室 1210128 新居 宙

(a)

Fig.1 AM-AFM topography images (20 µm×20 µm) of SBR surfaces without heat-treatment, (a), and after heat-treatment, (b)-(d). All images are plane filtered.

3 実験結果と考察

3.1 加熱処理条件に依存した SBR の表面構造

はじめに、熱処理条件に依存した SBR 表面形状の違いを明 確にするために,加熱処理を施していない SBR と各条件で加 熱処理を施した SBR の表面(共に蒸留水による超音波洗浄も 行っていない)を AFM で観察し,得られた結果の比較を行っ た. Fig.1 に,加熱処理前,および温度・時間を系統的に変え て加熱した SBR 試料の AFM 像 (topography) を示す.加熱処理 を施していない SBR[Fig.1 (a)]では, 滑らかな表面上にサイ ズが数"μm"程度の粒子(図中に白丸で囲んだ領域)が多数 確認された.この粒子状の構造は、70℃×7日の加熱処理を 施した SBR[Fig.1 (b)]おいても確認された. 一方, 120℃×7 日の加熱処理を施した表面[Fig.1 (c)]では、粒子状の構造 が大幅に減少し、数"mm"程度の細かな斑点状構造が表面一 様に確認された.この斑点形状の構造は、150℃×7日の加熱 処理後の表面[Fig.1 (d)]でも同様に確認された.以上,SBR 表面の構造は120℃以上の加熱処理に伴い大きく変化するこ とが明らかとなった.このような結果は、SBR の耐熱限界温 度が約120℃であることとコンシステントである.

Fig.3 AM-AFM topography images ($20 \ \mu m \times 20 \ \mu m$) of SBR surface before, (a), and after, (b)-(d), heat-treatment at 200 °C. All images are plane filtered.

3.2 加熱前後の表面同視野領域を室温環境で観察

続いて,加熱に伴う SBR 表面構造の劣化過程を明らかにす ることを目的に, 同一の SBR 表面(蒸留水による超音波洗浄 を行っている)の同一視野領域で,加熱に伴う構造変化の追 跡を行った.具体的には,Fig.2に示すように,設定温度200℃ で,約1分間加熱した SBR 試料を冷ましたのち AFM で観察を 行うという工程を計 10 回行った. その結果を Fig.3 にまと める. 加熱前の SBR 試料表面[Fig.3 (a)]では, 比較的滑ら かな表面が形成されているが, 蒸留水を用いた超音波洗浄に より明るい輝点の数が、Fig.1 (a)と比べて減少しているこ とが確認できる. この結果から, Fig.1 (a)で加熱前の SBR 試料上で観察された輝点は、ゴム試料に固有な構造ではなく、 表面に付着した不純物であると考えられる.この試料を1分 間加熱処理した結果, Fig.3(b)に示すように,表面に多数の リング状構造や斑点構造が現れた、さらに、1分追加熱(計2 分の加熱)を行った表面[Fig.3 (c)]では、リング状構造や斑 点構造のサイズが小さくなっていることが確認された.計5 分加熱した表面[Fig.3 (d)]では、斑点形状がさらに小さな

Fig.4 AFM phase images (20 μ m×20 μ m) of SBR surface simultaneously obtained with Fig. 3(a) and (b).

粒上に変化したが、その後の形状像に顕著な変化は確認され なかった.以上の結果より、SBR を 200℃で加熱した場合、 初期段階(加熱後4分間)で表面の微視的構造が変化するこ とが明らかになった.

SBR の加熱に伴う表面の力学特性変化を調べるために,加 熱初期段階の AFM topography 像[Fig. 3(a), (b)]と同時に取 得した AFM 位相像を Fig. 4(a), (b)に示す.本研究で観察し た位相像では,コントラストが明るいほうが試料表面が柔ら かいことを表している. Fig. 4 から,1 分間の加熱により, 表面上にコントラストが暗い斑点形状が出現していること が確認できる.この結果から,加熱に伴って,形状変化と共 に,表面の部分的な硬化が発生していると考えられる.ただ し,今回測定した位相像は,同一画像内の力学特性の分布を 定性的に表していないため,加熱前後での力学特性変化は比 較できない.したがって,今後の課題として,加熱に伴う力 学特性の変化をフォースマッピング測定によって定量的に 評価することが挙げられる.

4 まとめと展望

本研究では、AFM を用いて SBR の加熱に伴う表面構造や力 学特性の変化を追跡した.その結果、第一に加熱における表 面構造変化を同一視野で追跡する方法を確立した.また、本 測定手法によって、SBR の表面形状と力学特性は設定温度 200℃の場合、僅か数分で劇的に変化することを明らかにし た.一方で、本研究で観察した位相像は、あくまで、同一画 像内での力学特性の分布を定性的に検出することしかでき ない(異なる画像間で力学特性を比較することができない). この問題に関しては今後、フォースマッピングでの測定によ り解決可能だと考えている.

また、本研究では、表面形状や力学特性の変化は追跡でき たが、ゴム劣化現象の解明には、観察された各構造の詳細を 明らかにする必要がある.この課題は今後、AFM 以外にも電 子顕微鏡、X線光電子分光、X線回折法等の装置も併用して、 表面の組成を多角的に評価することで解決できると期待で きる.

参考文献

(1)小松公栄 著, ゴムのおはなし, 第1版, (日本規格協会, 2001).

(2)G. Binnig, C. F. Quate, and Ch. Gerber Phys. Rev. Lett. 56 (1986) 930.

(3)Garcia, R. Perez, R, Surf. Sci. Rep. 47, 197-301 (2002).