断面 SEM 画像解析によるカーボンナノチューブフォレスト構造評価 1210129 西森 秀人(先進エネルギーナノ材料研究室) (指導教員 古田 寛 教授)

1. 背景·目的

我々の研究室ではこれまで、カーボンナノチューブ(以下 CNT)フォレストの成長機構解明をめざして、触媒微粒子の形 状解析[1]や、CNT フォレストの成長形態[2]ラマン分光や結 晶構造との比較などの研究を行ってきた。CNT フォレストは 基板に垂直かつ高密度に成長した構造を持っており、基板と 平行方向には CNT 同士の接触により電気的コンタクトが形成 されていると考えられるが、CNT フォレストの成長形態と横 方向電気伝導機構の関係について詳しい報告はこれまでに行 われていない。

本研究では CNT フォレスト断面 SEM 像及び触媒微粒子 AFM 画像を python または MATLABを用いて画像解析・分析を行い、 CNT フォレスト構造を明らかにすることを研究の目的とする。

2. 実験方法

CNT フォレスト断面 SEM 画像を高速フーリエ変換し、115~ 180 の階調強度で BPF (Band Pass Filter)及びフィルタ領域 の逆フーリエ変換を行い、一枚の SEM 画像から周期の異なる CNT の抽出を行った。逆フーリエ変換画像の配向性・密度評価 には MATLAB のアドオンである GTFiber2 を使用した。

GTFiber2で得られる形状値のパラメータ依存性から、パラ メータを変化させたときのファイバー密度の極値を選択し、 CNT フォレスト断面 SEM 画像の解析のための最適値と思われ る点を探した。パラメータ変化に対しファイバー密度の変化 が安定な点を極値とした。初期パラメータの場合と最適化後 での測定結果の違いを比較した。また、求めた最適パラメー タを用いて、触媒膜厚条件の異なる試料について形状値を比 較した。

Fe 触媒厚さ 0.8 nm、1.0 nm、1.2 nm の AFM 画像を画像解 析し膜厚条件が異なるときの触媒微粒子の粒径と円形度を比 較した。また、膜厚に対応する CNT フォレスト解析結果と粒 径と円形度を比較した。実験に使用した SEM 画像及び AFM 画 像は CNT フォレストの成長形態[2]の論文内の画像を使用し た。

3. 実験結果

図1は上の段が短周期構造の逆フーリエ変換画像、下の段 が長周期構造の逆フーリエ変換画像である。空間周波数の周 期が長くなるとCNTの配向性が高いことが分かった。図2は GTFiber2を用いたCNTフォレスト構造解析結果である。上の 段が初期パラメータ、下の段が最適パラメータを用いたCNT フォレスト構造評価結果を示す。最適パラメータを用いたCNT フォレスト構造評価結果を示す。最適パラメータを用いた解 析結果の方がCNTフォレストの密度と長さをより反映してい た。また、触媒膜厚条件の異なる試料を解析すると、既報論 文で報告されていた膜厚増加による配向性と密度の低下が確 認された。触媒微粒子の粒径が小さいほどCNTフォレストの 配向性、密度、平均ファイバー長さが増加しており、平均フ ァイバー幅が減少していた。触媒微粒子の円形度が大きいほ どCNTフォレストの密度、平均ファイバー幅のばらつきが少 ないことが分かった。

3. 考察

粒径が大きい触媒微粒子を起点に成長する CNT の成長速度 は遅く、粒径が小さい場合では成長速度が速いことが知られ ており、CNT 成長速度に差が発生していると考えた。先に成長 した CNT は触媒微粒子との接触範囲が狭いので六員環以外の 五員環七員環の形成により湾曲し、遅れて成長してきた CNT に支えられながら成長しているのではないかと考えた。

触媒膜厚が増加すると微粒子間の結合により粒径が増加し、

粒径が大きいことでアニール処理によるオストワルド熟成の際に、微粒子の肥大化度合いが大きく、粒径が大きい微粒子を起点に成長する CNT フォレストは配向性、密度、ファイバー長さが低くファイバー幅が大きいと考えた。

円形度が大きいと微粒子表面の凹凸が少ないことにより CNT 成長のための炭素の結晶化が円滑に行われ、基盤に対し て垂直に成長していると考えた。対して、円形度が小さく微 粒子表面の凹凸が多いときは微粒子上での炭素の結晶化速度 に差が発生し、CNT が比較的垂直に成長しにくかったと考え た。

図2 粗密構造の異なる CNT フォレスト断面 SEM 画像と FFT 画像

参考文献

- F. Nagamine, T. Onishi, S. Hayashi, A. Pander, A. Hatta, and H. Furuta, "Image analysis of catalyst formation process for the highdensity growth of CNT forest",第28回日本MRS年次大会 (2018.12.19 北九州国際会議場、北九州市)
- [2] A. Pander, T. Onishi, A. Hatta, and H. Furuta, "Study of self-organized structure in carbon nanotube forest by fractal dimension and lacunarity analysis", Materials Characterization, 160 (2020) 110086.