4発ティルトウィング機のフライトコントローラの設計

# Flight Controller Design for Quad rotor Tilt Wing

システム工学群 機械・航空システム制御研究室 1210130 丹羽 拓巳

## 1. 緒言

垂直離着陸機(Vertical Take Off and Landing: VTOL)は垂 直離着陸が可能で滑走路を必要としない回転翼機の特徴と, 高速・長時間な航行が可能な固定翼機の特徴を併せ持った航 空機の形態であり,災害現場や不整地などでの運用が期待さ れている.

4 発ティルトウィング機(Quad rotor Tilt Wing:QTW)は 垂直離着陸機の一種である.4つの翼の機軸に対しての角度 を変える(=ティルトする)ことが特徴で,離陸時には翼を 地面に対して90°にすることでマルチコプターのように垂 直離陸を行い,徐々に翼を水平に近づけていく遷移飛行を経 て固定翼機のように水平飛行を行う.着陸時には逆のプロセ スを経てホバリングしながら垂直に着陸する.しかしながら, 遷移飛行中は不安定な状態になりやすく,実現には適切な制 御が必要<sup>(1)</sup>である.

QTW 無人機 (QTW-UAV) 実機での飛行試験を実施するためにはアクチュエータの制御を行うフライトコントローラが必要である.推力を細かく制御するホバリングの必要性や、ティルトという特殊な機構を持つ都合上、プロポからの直接制御や、既製品のマルチコプター用フライトコントローラの利用は困難であることから、自作でのフライトコントローラの設計と製作、動作検証実験を行う.

## 2. フライトコントローラの設計

## 2.1. システム概要

QTW のフライトコントローラに求められる機能は大きく



Fig.1 aircraft appearance

分けて3つである.機体の外観図を図1に示す.1つ目が, 機体の状態推定のためのセンサの読み出し及び姿勢推定と いった変換処理<sup>(2)</sup>,2つ目が,1つ目の機能で推定した状態を フィードバックして各アクチュエータへの入力値を生成し, 制御を行うこと,3つ目が,2つ目の機能で生成した入力値 により,前と後ろで独立した2つのティルト機構・4枚の翼 のフラッペロン・尾翼のラダー制御用のサーボモータ計7個



Fig.2 flight controller system

とプロペラ回転用のブラシレス DC モータ計4個のアクチュ エータ<sup>(3)</sup>に適切な信号を送り駆動することである.

以上を踏まえ,今回設計したフライトコントローラのシス テム概要を図2に示す.センシング・制御・アクチュエータ 駆動の役割にそれぞれ1つのMCUを割り当て別基板とし, 階層化するモジュール構造を採用することで,プログラムの 簡易化,トラブルが起きた際のメンテナンス性の向上,制御 により高性能なMCUが必要になった際にもセンシングモジ ュール,駆動モジュールは変更しなくてよいといった利点が ある.

## 2.2. 通信プロトコル

各モジュール間の通信は、センシングモジュールと制御モ ジュール間は短距離向けで高速な SPI 通信を用いる。制御モ ジュールと駆動モジュール間は、近辺にアクチュエータが配 置されていることから、差動信号を用いておりノイズに強い RS485を物理層に、多くのMCUで標準的に使用できるUART をデータ層に用いる。

駆動モジュールとアクチュエータ間の通信には、サーボモ ータには一度に複数のサーボモータを駆動できるシリアル 通信のプロトコルである Futaba 社の S.BUS を、ブラシレス DC モータには ESC を介して PWM を用いて制御を行う.

#### 2.3. センサ

センシングモジュールでは6軸慣性センサ,3軸地磁気センサ,気圧センサ,GNSSの4種類のセンサを処理する.Raw データはセンサモジュールの microSD に保存する.また,制 御モジュールに対して時間,角速度,姿勢,高度,座標を送 信する.

#### 2.4. GCS との通信

フライトコントローラと GCS (Ground Control Station) と の通信のため、2 系統の 2.4GHz 帯レシーバトランシーバを 搭載する.1 系統目は Futaba 社製のプロポ受信機であり、主 に制御信号の入力による手動操縦に用いる.データ層は S.BUS である2 系統目は MONO-WIRELESS 製 TWELITE を 使用し、機体・センサの状態量やバッテリ電圧のダウンリン クとより細かい制御入力を行う.

#### 3. フライトコントローラの製作

#### 3.1. 基板の製作

基板の外観図を図3に示す. 基板は2層のFR-4プリント 基板を2章のシステム概要に基づいて設計し発注, 部品の実 装を行った.

外形はセンシングモジュール,制御モジュールは 50× 50mm,アクチュエータを結線する駆動モジュールは 70× 100mm である.全体の重量はハーネスを含めて 200g 程度と なった.

#### 3.2. プログラムの実装

3.2.1. プロポからの制御入力

制御モジュールに対して、プロポからの S.BUS 信号入力 を各チャンネルの値にデコードするプログラムを実装した.

## 3.2.2. アクチュエータの駆動

駆動モジュールに対して,3.2.1 項とは逆にチャンネルの値 を S.BUS パケットにエンコードし,それをサーボモータに 送信するプログラムを実装した.

また, ESC の入力範囲である 1~2ms パルス幅の PWM を生成し ESC に対して出力するプログラムを実装した.



Fig.3 PCB appearance (after implementation)

## 3.2.3. 姿勢推定

センシングモジュールに対して姿勢推定を実装した.アル ゴリズムを示す.

姿勢推定には実装の簡易さからクォータニオン<sup>(4)</sup>を用いた相補フィルタを採用した.

クォータニオンを用いることで姿勢を1つのスカラーと3 つのベクトルで表現できる.また,ノルムは1である.

 $q = q_0 + q_1 i + q_2 j + q_3 k$  (1) またクォータニオンは回転軸の単位ベクトルnと回転角  $\theta$ [rad]で表すことができる.

$$\boldsymbol{q} = \cos\frac{\theta}{2} + \boldsymbol{n}\sin\frac{\theta}{2} \tag{2}$$

(3)

クォータニオンを用いて位置ベクトル**r**を回転させ**r**'とする場合、以下のようになる.

$$A = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

$$p_{\mathcal{X}} - \mathcal{P} = \mathcal{X} \times \boldsymbol{q} \ge \boldsymbol{p} \circ \overline{q} \text{ it } \square \overline{\text{ms}} \circ \widehat{\text{chc}} \ge \mathcal{A} \text{ str} = \mathbb{E} \text{ str}$$

-4r

$$\boldsymbol{qp} = \begin{bmatrix} 1 & \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \end{bmatrix} \begin{bmatrix} q_0 p_0 - q_1 p_1 - q_2 p_2 - q_3 p_3 \\ q_1 p_0 + q_0 p_1 - q_3 p_2 + q_2 p_3 \\ q_2 p_0 + q_3 p_1 + q_0 p_2 - q_1 p_3 \\ q_3 p_0 - q_2 p_1 + q_1 p_2 + q_0 p_3 \end{bmatrix}$$
(4)

以上を用いて姿勢推定アルゴリズムの概要を示す. まずジャイロセンサから取得できる角速度ベクトル $\omega = [\omega_x \omega_y \omega_z]^T [rad/s]$ より, クォータニオン $q = [q_0 q_1 q_2 q_3]^T$ は 以下の微分方程式で表せる.

$$\frac{d}{dt} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -\omega_x & -\omega_y & -\omega_z \\ \omega_x & 0 & \omega_z & -\omega_y \\ \omega_y & -\omega_z & 0 & \omega_x \\ \omega_z & \omega_y & -\omega_x & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$
(5)

式(5)を積分することで現在姿勢のクォータニオンが得ら れる.しかし、ジャイロセンサのみでの姿勢推定はジャイロ センサの誤差が積分処理によって累積し、ドリフトが発生し てしまう.よって、この誤差を加速度センサで補正する.

考え方は、もしジャイロセンサに誤差がないと仮定すると、 角速度のみで更新したクォータニオン $q_{\omega}$ で現在の加速度ベ クトルaを回転させた場合、そのベクトルは重力加速度の初 期ベクトル $g = [0 \ 0 \ 1]^T [G]$ に一致するはずである。一致しな かった場合、そこからgに一致させるような回転のクォータ ニオン $q_a$ をつくり、回転角度 $\theta$ に係数aをかけ、角速度のみで 更新したクォータニオン $q_{\omega}$ にかけることで補正するという ものである.

まず,式(5)よりジャイロのみでクォータニオンを更新する.

$$\boldsymbol{q}_{\boldsymbol{\omega}} = \int \frac{1}{2} \Omega \boldsymbol{q} dt \tag{6}$$

次に加速度センサより得た加速度ベクトル $a = [a_x a_y a_z]'$ を $q_\omega$ で回転させる.回転後のベクトルをa'とする.

$$a' = Aa$$

(7)

このとき、 $q_{\omega}$ およびaに誤差が含まれていない場合、回転後のa'はgと一致するが、実際には誤差が含まれるので一致しない.これを一致させるような回転のクォータニオン $q_a$ をつくる.

*a*'と*g*の回転軸単位ベクトル*n*は外積を用いることで求められる.

$$\boldsymbol{n} = \frac{\boldsymbol{a}' \times \boldsymbol{g}}{|\boldsymbol{a}' \times \boldsymbol{a}|} \tag{8}$$

 $a' \ge g$ の回転角 $\theta$ は内積を用いることで求められる.

$$\theta = \arccos(\boldsymbol{a}' \cdot \boldsymbol{g}) \tag{9}$$

 $\theta$ にかける係数 $\alpha$ を決める. この係数が大きいほど加速度に よる補正量が大きくなり、小さければ補正量も小さくなる. 加速度センサに重力加速度以外の加速度が働いている場合 は正常な補正ができないので、そういった場合は $\alpha$ を小さく するような関数を設定する. 今回は指数関数を用いて、加速 度のノルムが 1 から離れるほど $\alpha$ が小さくなるように以下の ような関数とした.  $\beta$ および $\gamma$ は任意係数である.

$$\alpha = \beta \exp(-\gamma(|a|-1)^2)$$
 (10)  
 $\alpha$ を用いて式(2)より $q_a$ を求める.

$$\boldsymbol{q_a} = \cos\frac{\alpha\theta}{2} + \boldsymbol{n}\sin\frac{\alpha\theta}{2} \tag{11}$$

最後に,式(5)を用いてジャイロで更新したクォータニオン  $q_{\omega}$ を加速度センサから求めたクォータニオン $q_a$ で補正する. 補正後のクォータニオンをq'とする.

 $q' = q_a q_\omega$  (12) 最後に必要になり次第クォータニオンをオイラー角[rad] に変換する.

$$\begin{bmatrix} pitch \\ roll \\ yaw \end{bmatrix} = \begin{bmatrix} atan2(2(q_2q_3 + q_1q_0), q_0q_0 - q_1q_1 - q_2q_2 + q_3q_3) \\ asin(-2(q_1q_3 - q_2q_0)) \\ atan2(2(q_1q_2 + q_3q_0), q_0q_0 + q_1q_1 - q_2q_2 - q_3q_3) \end{bmatrix}$$
(13)

#### 3.2.4. 高度推定

同様にセンシングモジュールに対して高度推定を実装した.

高度 11km までは高度と気圧の関係式は式(14)のようになる. このとき、hは高度[m]、pはその高度での気圧[hPa]、 $p_0$ は地上気圧[hPa]、 $T_0$ は地上での気温[K]である.

$$h = -\frac{T_0\left(\left(\frac{p}{p_0}\right)^{\frac{1}{5.265}} - 1\right)}{0.00649} \tag{14}$$

式(14)を用いて高度推定を行う.

### 4. 動作検証実験

#### 4.1. プロポからの制御入力・アクチュエータの駆動

制御モジュール・駆動モジュールを使用する. プロポから 制御モジュールに入力を行い,サーボモータ,ブラシレス DC モータをフィードフォワード制御する.

機体を 6 軸力覚センサ上に設置し、ティルト角は 90°固定とする. ロギングは 600Hz で行う. ノイズ除去として、カットオフ周波数 10Hz のローパスフィルタをロギングソフト 側で通過させる.

4 発のブラシレス DC モータをすべて同じ PWM 信号で駆

動する. パルス幅を 1ms から出力 50%である 1.5ms まで,出力の 5%にあたる 0.05ms ずつ増やしていき,ブラシレス DC モータの回転が安定してから 10s のロギングを行う.

結果から,機体重量と釣り合う推力を発生させられるパル ス幅を検討する.

またその状態で前側のフラッペロンを駆動する.機体の重量と釣り合う推力を発生させたあと、力覚計をゼロリセットし、フラッペロンの角度を0°から30°まで5°ずつ変化させた場合のデータを10sロギングする.結果から、プロペラ後流によるピッチングモーメントの発生を観察する.

#### 4.2. 姿勢推定

センシングモジュールを静置状態からランダムに動かし たあとまた静置状態に戻す.ジャイロのみでクォータニオン を更新した場合と,3.2.2 項で示した姿勢推定アルゴリズムを 用いた場合とのオイラー角の出力を比較する.

## 4.3. 高度推定

センシングモジュールを使用する. 建造物において, 階高 はおよそ3mだということが知られている. 2階建ての建物 を上り下りして,高度推定の出力値における高度差が3m程 度になるということを確認する.

## 5. 実験結果

#### 5.1. アクチュエータの駆動

入力パルス幅と発生した推力のグラフを図4に示す.機体 重量は約3.5 kg であるため,パルス幅1350msのPWMを入 力した際,約36Nの推力が発生し重力と釣り合うことがわか った.

次に、その状態でフラッペロンを変化させたときのモーメントの変化を図5に示す.プロペラ後流によってモーメントが発生していることが確認できる.フラッペロン角度が20°の際が最も大きく、以降は減衰している様子が確認できた.

#### 5.2. 姿勢推定

実験によって得られたオイラー角を図6に示す.

ロール,ピッチ角について,角速度センサのみの場合は誤 差が積算し静置したあとにもゼロ点に戻らずドリフトが発 生しているが,6軸センサで補正した場合は加速度センサに よって誤差が補正されているのがわかる.

しかし、ヨー角についてはどちらの場合もドリフトが発生 している.重力加速度がヨー軸を貫いていることから、ヨー 角は加速度センサで補正できないためであり、これは今回テ ストを行わなかった地磁気センサを 3.2.3 項で示したアルゴ リズムに組み込むことによって改善すると考える.

#### 5.3. 高度推定

実験によって得られた高度を図7に示す.

2 階に移動した場合の高度は 3.5 m 程度であり、概ね予想 通りの結果であると言える.しかしながら、指標となる高さ が正確ではないことから、あくまで参考程度で、気圧センサ が正常に動作していることは確認できたが、高度推定の方法 に問題がないことを担保できる結果ではない.

また仮に高さの指標が正しかったとしても,実験結果 45 秒前後の1 階に戻ってきた際にゼロ点に戻りきっていない ことから,高度推定の方法は再考する必要がある.この方法 は地上気圧が変化しないことが前提であるが,実際には気圧 は変化しやすく,それによってゼロ点誤差が発生していると 考えられる.加速度センサを2階積分し気圧を相補すること や,絶対高度を出力できる超音波センサを採用し,気圧セン サはその補助に用いるといった対策が考えられる.



Fig.7 relationship flapperon angle and pitching moment

#### 6. 結言

本稿では、QTW-UAV 実機での飛行実験を行うため、フラ イトコントローラの設計と製作を行い、求められる役割の動 作検証実験を行った. 今後は機体のモデル化、制御則の検討 と実機の飛行実験を行っていく.



- (1) 鈴木智他, "ティルト翼機構を有する4発ロータQTW-UAV の姿勢制御",日本機械学会論文集 C 編, Vol.73, No731(2007), pp.104-111.
- 野波健蔵, "ドローン工学入門 モデリングから制御ま (2) で", コロナ社(2020), pp.56.
- 三田侑弥, "4 発ティルトウィング機の試作",高知工 (3) 科大学附属情報図書館, 2019 年学位論文(2019)
- 矢田部学, "クォータニオン計算便利ノート", MSS 技 (4) 報, Vol.18(2007), pp29-34.