フォースプレート計測に基づく座位における上半身質量中心推定

Estimation of center of gravity of upper body in sitting posture from force plates measurement

システム工学群

動的デザイン研究室 1210169 村上 博都

1. 緒言

自動運転技術の発展など輸送機器技術が向上しており,輸送機器に搭乗する際の快適性もこれからの課題の1つと考えられる.快適性を評価するためには,座位における人体のバランス特性を解析する必要がある.座位の解析に関する過去の研究では Reeves らの研究成果⁽¹⁾があるが,座位時の評価をするためには,上半身の質量中心(COM)の位置や加速度の計測が必要となる.一方,座位姿勢における上半身 COM 計測には 3 次元動作解析システムが一般的に用いられるが,計測スペース,計測の手間,導入コストの観点から実用的ではない.

本研究の目的は、座位時の実用的な上半身 COM 計測法の 開発である.我々は、床反力計(以下 FP)2枚を用いた実用 的な上半身 COM 推定法を提案する.本手法では、2枚の FP を座位時における支持面との接地面である臀部下と足部下 に配置する.人体を上半身、骨盤、大腿、下腿、足部の5つ の剛体セグメントに分割し、身体モデルを作成する.これら を統合した並進と回転の運動方程式から、上半身 COM 変位 と加速度を導出する.推定精度の検証方法として3つの状況 で計測を行った.1つ目が安静座位、2つ目が随意運動、3 つ目が座面揺動である.本推定法の推定精度は、3次元動作 解析システムとの比較により明らかにする.

2. 上半身 COM 推定の推定法

2.1 座位時身体モデル

上半身 COM 推定に用いる座位時身体モデルを図1に示す. モデルは、骨盤の上端部(腸骨稜)を境界として、骨盤と上 半身(頭部,上腕,前腕,手部)を分割する.上半身は腸骨 稜まわりに回転運動し,座面(支持面)は水平移動可能とす る.以下では、添え字を座面は*s*、骨盤部は*p*,上半身部は *u*、大腿部は*t*,下腿部は*l*,足部は*f*とする.

前方をx軸,鉛直方向をz軸とする.また,(X,Z)を絶対 座標系の変位,(x,z)を相対座標系の変位とする.相対変位 の原点は,x軸を腸骨稜の中点,z軸を座面の高さとする. X_s は支持面の絶対変位, θ_u は上半身の姿勢角とし,右回 りを正とする.

臀部下の FP からの計測値として,垂直力を R_{z1} , せん断力を R_{x1} , y軸まわりのモーメント N_{y1} をとする.また,足部下の FP からの計測値として,垂直力を R_{z2} , せん断力を R_{x2} , y軸まわりのモーメント N_{y2} とする.

身体パラメータとして、mを各セグメントの質量、 J_u を 上半身質量中心まわりの慣性モーメント、Lを各セグメント の高さ、lを各セグメントの質量中心の高さ、 l_u を腸骨稜 から上半身質量中心までの長さ、gを重力加速度とする.以 下では、姿勢角 θ_u が微小として、身体の上下運動はしない ことを前提とする.上半身と骨盤部は1リンクの剛体モデル として考え、脚部は動かないもの、左右一体として仮定する. また、背骨の湾曲も無視している.表1に示す実験の解析に 用いた身体パラメータは文献⁽²⁾⁽³⁾を参考に決定した.

Table 1 Physical parameters of each segment.

Segment	Symbol	Value
Upper body	m_u	0.469 <i>M</i>
	l_u	0.190H
Pelvis	m_p	0.187 <i>M</i>
	l_p	0.051H
	L_p	0.130H
Thigh	m_t	0.220M
	l_t	0.063H
	L_t	0.195H
Lower leg	m_l	0.102 <i>M</i>
	l_l	0.061H
	L_l	0.246H
Foot	m_f	0.022M
	l_f	0.023H
	L_f	0.039H

M : mass [kg], H : height [m]

2.2 床反力計計測による上半身 COM 推定

図1のモデルから5つの剛体セグメントに関して鉛直,水 平,回転に関する15個の運動方程式が得られる.これらの 運動方程式から上半身 COM 推定式は以下のようなFPの計 測値と座面の加速度の関係式となる.

$$\begin{split} \tilde{\tilde{x}}_{u} &= -\frac{1}{m_{u}} \left(M \ddot{X}_{s} + R_{x1} + R_{x2} \right) \tag{1} \\ \tilde{x}_{u} &= \frac{1}{m_{u}g} \left[- \left\{ \frac{J_{u}}{l_{u}} + m_{u} \left(L_{p} + L_{l} + L_{f} + l_{u} + l_{p} - l_{f} \right) \right\} \ddot{x}_{u} \\ &+ \ddot{X}_{s} \left\{ m_{u} \left(L_{p} + l_{u} - l_{p} \right) + \left(m_{u} + m_{p} + m_{t} \right) \left(L_{l} - l_{l} \right) \\ &+ \left(M - m_{f} \right) \left(L_{f} + l_{l} - l_{f} \right) \right\} + \left(m_{u} L_{t} + m_{p} L_{t} + m_{t} l_{t} \right) g \tag{2} \\ &- R_{x1} \left(l_{p} + l_{f} - L_{l} - L_{f} \right) - R_{x2} l_{f} \\ &- R_{z1} L_{t} - N_{y1} - N_{y2} \right] \end{split}$$

ここに、 $\tilde{\ddot{x}}_u, \tilde{x}_u$ はそれぞれ上半身 COM 加速度と変位の推定 値である.

3. 精度検証実験

3.1 実験方法

被験者は 20 代健常者 3 名で、本実験は 3 つの実験 (A)安静座位実験、(B)随意運動実験、(C)支持面揺動実験を 3 回ず つ行った.実験(A)は、静止した座面上での静止実験である. 実験(B)は、静止した座面上で被験者自身が 0.25Hz で上半身 を前後させる実験である.実験(C)は、揺動実験機を 0.05Hz ~1.5Hz 帯域で 0.05Hz 刻みの 30 個の周波数を印加した cos 波の重ね合わせで生成した加速度で揺動させる実験である. このときの最大加速度は 0.2m/s² とした.計測時間 50 秒とし た.サンプリング周波数は 100Hz とする.FP (TE-3040,テ ック技販社)計測に基づく上半身 COM 推定の推定精度の検 証のために光学式モーションキャプチャ (NAC3D System, Motion Analysis 社,以下 MC)を用いて計測し、上半身の COM 推定を行った.被験者の姿勢は、腕を身体の横で自然に下ろ し、膝の角度が 90 度になるように指示した.

すべての実験で、ノイズ除去のため計測データに 0.1Hz~ 1.5Hz のバンドパスフィルタを適用した.計測開始後 5 秒間 と終了前 5 秒間を切り取った 40 秒間を解析区間とした.

座面を揺動させたとき, FP の x 方向のせん断力計測値に 慣性力が作用するため,以下の式を用いて補正をした.

$$R_{x1} = \bar{R}_{x1} + 3.97 \times \ddot{X}_{s}$$

$$R_{x2} = \bar{R}_{x2} - 1.82 \times \ddot{X}_{s}$$
(3)

ここに, $\bar{R}_{x1}, \bar{R}_{x2}$ は床反力計からの計測値である.

3.2 推定精度の検証

各実験の FP と MC の推定結果を図 2~4 に示す. 図中の上 段のグラフが上半身 COM 変位を示す. 下段のグラフが上半 身 COM 加速度を示す. 赤線が FP からの推定値, 黒線が MC からの推定値である. 図 2~4 はそれぞれ安静座位, 随意運 動, 座面揺動実験の推定結果を示す.

図 2~4 の各実験の推定結果より,安静座位では加速度に 大きな誤差は見られない.しかし,変位に関しては大きさ, 位相ともに誤差が見られる.随意運動では加速度,変位とも に大きさと位相に大きな誤差は見られない.座面揺動では加 速度,変位ともに大きさと位相に誤差が見られる.また,座

面揺動実験の推定結果において、3名の被験者で結果に差異 はみられなかった.

4. 結言

本研究の目的は, FP2 枚用いて座位時上半身 COM の推定 を確立することである.3 つの実験結果より,3 つとも MC からの推定結果との大きな誤差はなく推定することができ た.しかし,安静の変位や座面揺動の推定結果に誤差が見ら れるため精度向上が求められる.

文献

- N. Peter Reeves, J. Cholewicki, K. S. Narendra, Effects of reflex delays on postural control during unstable seated balance, Journal of Biomechanics, Vol. 42(2009), pp. 164-170.
- (2) 阿江通良,湯海鵬,横井孝志,日本人アスリートの身体部分慣性特性の推定,バイオメカニズム,11巻(1992), pp. 23-33.
- R. Contini, Body segment parameters, Part II, Artificial limbs, 16-1 (1972), pp. 1-19.