Development of non-contact suspension system using rotation mechanism of multiple permanent magnet

知能機械工学コース

機械・航空システム制御研究室 1235094 山本 健太郎

1. 緒言

近年,機械製品の小型化やそれに伴う精密化が進んでおり, その生産過程では部品の精度が保持できる搬送・組立装置や クリーンルーム環境の需要が高まっている.そこで,部品の 取扱いに機械的接触のない非接触支持機構を用いれば,接触 に起因する部品の傷つきや変形を防止できる.

非接触支持機構の主な発生力には、空気圧、静電気、磁気 力があげられる⁽¹⁾.中でも、磁気力を利用した機構はクリー ンルーム環境に適応でき、大きな吸引力を発生させることが 可能であるため、本研究では磁気力の利用に注目した.

磁気力の主な発生源として、永久磁石、電磁石、超伝導体 がある⁽²⁾⁽³⁾.永久磁石を用いる機構は、磁性体と永久磁石の 空隙をアクチュエータによって調整することで浮上力を制 御する.これは電磁石に比べて消費電力や発熱を小さくでき る可能性があり、超伝導体のような周囲環境の制限も少ない ことから、本研究は永久磁石を用いた機構に着目した.

これまでに永久磁石とリニアアクチュエータを使用した 非接触支持機構がいくつか提案されてきた⁽⁴⁾⁽⁵⁾が,駆動軸方 向に大きな装置となってしまう.そこで本研究は,永久磁石 と小型のロータリーアクチュエータを使用し,鉛直・水平方 向に制御可能な非接触支持機構の開発を目的とする.

本稿では、支持原理の提案、機構の設計方法を述べるとと もに、浮上体の動きを鉛直方向のみに制限して行ったモデル 化と試作機の概要、浮上実験の結果について述べる.

2. 支持方法

2.1 支持原理

提案する非接触支持機構の概要を図1 に示す. 角柱形状 の永久磁石とDCサーボモータを2つずつ使用する. 永久磁 石をモータで回転させ,角度を制御することで,浮上体に作 用する浮上力を重力と釣り合うように鉛直方向の制御する. またモータは,左右独立して制御することで水平方向の制御 も同時に行い,非接触支持を実現する.

Fig.1 Principle of suspension system

2.2 構成部品

本機構で使用する,永久磁石と浮上体の諸元を表1に示す.

永久磁石を回転させる DC サーボモータは、小型でバックラ ッシュが小さく位置決め精度に優れた Harmonic Drive Systems Inc.製の RH-5A8802 を使用する

Table 1 Specification of component parts

	Permanent magnet	Levitating body
Material	Neodymium magnet	SS400
Dimensions (mm)	$5 \times 5 \times 40$	Ø25

3. 機構の設計

3.1 磁極の組合せの検討

本機構における,物体の支持に最適な磁極の組合せを検討 するために,電磁界解析ソフトJMAGを用いて磁束線,磁力 の解析を行った.磁石角度が35 deg,45 degにおける,異極 対向の場合の磁束線と,N極の同極対向の場合の磁束線を図 2,図3に示す.また,このとき浮上体にはたらく鉛直方向 の磁力を表2にまとめた.

Table 2 Magnetic force in the vertical direction

Angle of the	Magnetic force (N)	
magnets (deg)	Opposite poles	Same poles
35	0.492	0.695
45	1.12	0.940

表2より,磁石角度が10 deg 変化したときの鉛直方向の磁力変化は,異極対向が+0.628N,同極対向が+0.245Nとなった.図2,図3より,磁石角度が変化したときの浮上体内を通過する磁束線の変化は,異極対向の方が大きかった.磁力

は磁束線の方向にはたらくため,異極対向の方が大きな磁力 変化を得られたと考えられる.本機構では,磁石の回転によ る磁力変化が必要なため異極対向を採用した.

3.2 磁石間距離の検討

磁石間距離の検討のために,実際に使用する永久磁石と鉄球を配置して磁力の測定を行った.磁石間距離Lは,40 mmから2.5 mm間隔で50 mmまで,磁石角度は左右同じで,30 degから5 deg毎に55 degまで設定して鉛直方向の磁力を,ロードセルを用いて測定した.実験結果を図4に示す.平衡位置付近に着目すると,L = 45 mmのときが最も線形的な磁力の上昇がみられたため,本機構ではL = 45 mmを採用した.

3.3 磁力の解析

永久磁石を左右同じ角度で回転させ,浮上体にはたらく鉛 直・水平方向の磁力を JMAG で解析した.解析結果を図5に 示す.鉛直方向のみの磁力変化が得られ,最大で1.24Nとな り浮上体の支持には十分な磁力が得られると考えられる.

また,図5において重力と浮上力が釣り合う平衡位置となった37 degを中心に、永久磁石を異なる角度に回転させた 解析結果を図6に示す.水平方向の磁力変化が得られ、異な る角度の回転も用いることで浮上体の水平方向の制御を行う.

Fig.5 The magnetic force at the same magnet angles

Fig.6 The magnetic force at the different magnet angles

4. モデル化

まずは鉛直方向のみの浮上体の制御を考えるため、 $\theta_1 = \theta_2$:= θ としてモデル化を行った.機構のモデルを図 7 に示す.

鉄球および右側の永久磁石の運動方程式は,

$$m\ddot{z} + D_F \dot{z} = f_v - mg \tag{4.1}$$

$$(J_M + J_P)\ddot{\theta} + D_M\dot{\theta} = K_\tau i + \tau_h + \tau_v \tag{4.2}$$

と表される. 式(4.1)の f_v , 式(4.2)の τ_v , τ_h は非線形であるため 線形化を行った.

浮上力 f_v は、 θ (rad)とd (m)の2変数でJMAGによる磁力 解析後、重力と釣り合う浮上力(図8、赤線)上の1点、平 衡位置(d_0, θ_0)で線形化を行った.線形化した浮上力 f_v を式 (4.3)に示す.浮上力の反作用によるトルク τ_v は、 f_v と同様に θ (rad)とd (m)の2変数でトルク解析後、平衡位置(d_0, θ_0) で線形化を行った.線形化したトルク τ_v を式(4.4)に示す.永 久磁石間の磁力によるトルク τ_h は、 θ (rad)の1変数でJMAG によるトルク解析後、平衡位置 θ_0 で線形化を行った.解析結 果と5次近似曲線を図9に示す.線形化したトルク τ_h を式 (4.5)に示す.ここで、 $k_{\theta}, k_z, k_{\nu\theta}, k_{\nuz}, k_h$ は定数である.

$$f_v = k_\theta \theta - k_z z \tag{4.3}$$

$$\tau_{\nu} = k_{\nu\theta}\theta - k_{\nu z}z \tag{4.4}$$

$$r_h = k_h \theta \tag{4.5}$$

τ

Fig.8 Analysis result of levitation force

Fig.9 Analysis result of torque due to magnetic force between permanent magnets

式(4.1)~(4.5)より、線形化した運動方程式は、入力u=i、 出力y = zとして次のような状態空間モデルで表される.

$$\dot{x} = Ax + Bu \tag{4.6}$$

$$y = Cx \tag{4.7}$$

ここで,

$$x = \begin{bmatrix} \theta & z & \dot{\theta} & \dot{z} \end{bmatrix}^{T}$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k_{h} + k_{\nu\theta}}{J_{M} + J_{P}} & -\frac{k_{\nu z}}{J_{M} + J_{P}} & -\frac{D_{M}}{J_{M} + J_{P}} & 0 \\ \frac{k_{\theta}}{m} & -\frac{k_{z}}{m} & 0 & -\frac{D_{F}}{m} \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 & \frac{K_{\tau}}{J_{M} + J_{P}} & 0 \end{bmatrix}^{T}$$

$$C = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$

である.

このとき,可制御行列V。および可観測行列V。の行列式を計 算すると,

$$\det \mathbf{V}_{c} = -\frac{k_{\theta}^{2} K_{\tau}^{4}}{m^{2} (J_{M} + J_{P})^{4}}$$
(4.8)

$$\det \boldsymbol{V}_o = -\frac{k_\theta^2}{m^2} \tag{4.9}$$

となり、これらは0ではないため可制御性、可観測性が確認 され,理論的に浮上可能であることが示された.

5. 試作機

5.1 制御システム

制御システムの構成を図 10 に示す. 図に示す通り, 左右 の永久磁石角度の目標値Refangleと浮上体位置の目標値 Refpositionの3つの目標値をもったシステムである. それぞ れの目標値に対して PD 補償の3 つのループがあり、補償さ れた結果を加算した信号が、それぞれ左右のモータに電流値 として入力される.

5.2 試作機の概要

製作した試作機を図 11 に示す. 浮上体の位置検出には, 非 接触で金属の微小変位を測定でき,小型で応答速度が高い渦 電流変位センサを使用する. 渦電流変位センサは浮上体下部 に設置し、マイクロステージによって正確な位置調整が可能 となっている. 永久磁石の角度検出は, DC サーボモータに 付属しているインクリメンタルエンコーダを使用し, 左右独 立してパルスのカウント行う.システム全般の演算を行う DPS は、エムアイエス株式会社製の sBOX II を使用する.ま た,鉄球の動きを鉛直方向のみに制限できるようにリニアレ ールを取り付た.

Fig.11 Overview of the prototype

6. 浮上実験

浮上実験の結果を図 12 に示す.浮上体位置は平衡位置か ら徐々に振動が大きくなり、最終的に永久磁石に吸着した. しかし, 浮上体に追従して永久磁石が動いており. 浮上体に 復元力がはたらいているため, ゲインの再調整で浮上実現の 可能性は十分にあると考えられる.

7. 結言

本稿では、永久磁石とロータリーアクチュエータを使用し た非接触支持機構の提案を行った.そして、機構を設計する にあたり,磁束線および磁力の解析,磁力の測定実験を行い, 最適な磁極の組合せと磁石間距離を導出することができた. また, 浮上システムのモデル化を行い, 可制御性および可観 測性が確認できたため,理論上浮上可能であることが示され た. 浮上実験では浮上の実現には至らなかったが、浮上体に 対して復元力がはたらいていることが確認できたため, ゲイ ンの再調整で浮上できる可能性があると考えられる.

文献

- 一般社団法人電気学会磁気浮上技術調査専門委員会編, (1)磁気浮上技術の原理と応用、科学情報出版株式会社 (2018)
- B. V. Jayawant: Electromagnetic Levitation and Suspension (2)Techniques (1981) Edward Arnold Ltd.
- (3)磁気浮上方式と関連技術,電気学会技術報告(II部)第 353 号, 電気学会, (1990)
- (4) 岡宏一, 樋口俊郎, 永久磁石とアクチュエータを用いた 3 自由度平板浮上システム, 電気学会論文 Vol115D, No.3, (1995)
- 岡宏一, 樋口俊郎, 白石卓也, 永久磁石の運動制御によ (5) る懸垂形磁気浮上機構,電気学会論文誌D,119巻3号, (1999)