レイリー散乱型光ファイバ分布センサによる VaRTM 成形の樹脂流動モニタリング

Resin Flow Monitoring of RTM by Rayleigh Scattering Optical Fiber Distributed Sensor

航空宇宙工学コース

先端機械・航空材料工学研究室 1235096 秋澤 秀夫

1. 緒 言

軽量で高強度,高剛性という特徴を持つ FRP 製品は,そ の応用分野の広がりとともに大型,複雑形状化し,成形工 程の開発コストの上昇が問題となっている.それを解決する 手法として,成形中の FRP 内部状態のその場モニタリング 手法が注目されている⁽¹⁾. その中でも我々は VaRTM 成形に おける,樹脂含浸のモニタリングに着目した.

VaRTM 成形では, 含浸工程で未含侵部が欠陥として生じ ることがあるため, 樹脂流動のモニタリングは大変有効であ る. 我々はこれまで, 分布ひずみセンサであるレイリー散乱 型光ファイバ分布センサによる樹脂流動モニタリングに関 する研究を行ってきた.本研究では, このセンサを用いて樹 脂流動の二次元モニタリングを試みた.

2. フローフロント検出方法

含浸方向に対して水平に本センサを設置し、VaRTM 成形 でプリフォームに樹脂を含浸させてひずみを測定すると、図 1のような分布が得られる.時刻 μで測定したひずみは樹脂 注入口付近で引張になった後圧縮となり、フローフロント付 近では圧縮ひずみは減少して未含侵部ではゼロひずみとな る.含浸が少し進んだ時刻 μでは、フローフロント位置が移 動して、ひずみが圧縮からゼロに変化する位置も移動する. しかし、それ以外のひずみ分布は時刻による変化が小さく、 ひずみ分布の差分を取ることでフローフロント位置が差分 のピークとして現れる(図 1 の Δε).これがフレーム間差 分法であり、本研究ではこれを用いてフローフロント位置の 検出を行った.

3. 実験方法

3.1 ひずみセンサ

本研究で使用したセンサは、レイリー散乱型光ファイバ分 布ひずみセンサ(ODiSI A-50/Luna Technologies)である. このセンサはレイリー散乱光強度分布を測定し、その分布の 空間周波数スペクトルを FFTで求め、規準となるスペクトル 分布からのピーク周波数シフトがひずみと比例することを 利用して、ひずみ分布を求めるセンサである⁽²⁾. 光ファイバ の直径は0.125mmであり、ひずみ測定の空間分解能は1mm, ひずみ測定精度は1µεである. また実験では、光ファイバセ ンサのゲージ長を 1cm,空間分解能を 1mm に設定し、2 秒 間隔で測定した.

3.2 含浸試験

本研究では、図2に示すようにガラス繊維プリフォームに 光ファイバセンサを埋め込み、含浸実験を行った.なお、図 中のLは光センサの長さに沿った測定位置である.強化繊維 にガラスクロス(平織、目付200g/m²)を、樹脂の代わりに シリコンオイル(KF96-500CS,信越シリコーン、動粘度500 mm²/s)を使用した.25cm×25cmのガラスクロスを8枚積層

Fig.1 Strain in preform during impregnation process.

sensor[cm])

し、一本の光ファイバを4枚目と5枚目の間に、含浸方向に 対して45°になるように格子状に配置した.また光ファイバ は1cm間隔でガラスクロスに縫い込み、テープで複数ヶ所を 金型に固定した.その後、真空引きを行い、このときのひず みを0とした.シリコンオイルの含浸が完了するまで測定を 行い、また含浸の様子を撮影して、得られた画像から目視に よるフローフロントの位置を求めた.

Fig.3 Strain distribution obtained in the range of X=179.5 to 215[cm] from distortion at 240, 300,420 seconds

Fig.4 $\Delta\epsilon$ obtained in the range of x=179.5 to 215.5 [cm] from distortion at 240, 300,420 seconds

4. 実験結果および考察

4.1 プリフォームのひずみ分布

図 3 に測定開始から 240s, 300s, 420s の B2(L=179.5~215[cm]の範囲)で得られたひずみ分布を示す. 240s における フローフロントは 198cm である. 図1と図3を比較すると, 含浸方向に対してセンサを 45°傾けた場合でも, 0°の場合と よく似たひずみ分布を得られた. フローフロントによるひず み変化は 200µ 程度であった. また, ひずみ分布全体の中に 生じた周期的なひずみ分布は, センサの縫込みによる影響で あると考えられる.

4.2 フローフロント検出

図4に2.に記載のフレーム間差分法を用いて,測定開始から240s, 300s, 420sの $L=179.5\sim215$ [cm]の範囲で得られたひずみ分布から得られた $\Delta \epsilon$ の分布を示す. 負のピークに注目すると,含浸の進行とともにピーク位置が移動し,これがフローフロント位置を示すと考えらえる.また他の区間においても同様の結果が得られた.

図5に、光ファイバセンサと目視によるフローフロント位置と成形時間の関係を示す.ただし、図のフローフロント位置は、光ファイバの長さに沿った位置に変換したものである. 図より、最初にA1,A2,B2,B3の測定部でフローフロントが検出され、試験片中央部でA1とB3の端に樹脂が到達するためにそれ以後は検出不能になり、それ以降は代わりにA3,B1によってフローフロントが検出されることが示されている.図より、光ファイバセンサと目視によるフローフロント位置は互いによく一致していることが分かる.これより、一本の光ファイバを格子配置することによって、複数個所のフローフロントを同時に検出することが出来ることが分かった.

Fig.5 Flow-Front position along fiber length detected by sensor and video camera.

Fig.6 Flow-Front shape at arbitrary time detected by sensor and video camera.

得られたフローフロント位置の情報から,時間ごとの等高 線プロットを作成した.その結果を図6に示す.図より,時 間の経過とともにフローフロントを示すラインが含浸方向 へ移動していくことがわかった.200sにおける目視によるフ ローフロントの観測では y=0cm の端部では先流れが生じて おり,y=25cm では遅れが生じていることがわかる.200s における目視で得られた形状と比較するとよく一致してお り,本手法でフローフロントの二次元形状のモニタリングが 可能であることが分かった.

5. 結言

本研究では、樹脂流動を二次元的に捉えることを試みた. そのため本研究では、プリフォームにレイリー散乱型光ファ イバセンサを格子状に埋め込み、得られたプリフォームのひ ずみ分布にフレーム間差分法を適用し、フローフロント検出 を行った.その結果、本センサで含浸挙動を二次元的に捉え ることができることがわかった.

文献

- 高坂達郎,"複合材料成形技術の最前線 3.近年の FRP 成形モニタリング技術とその応用",日本材料学会, Vol.67,No.8 (2018),pp.819-825
- (2) 大越孝敬,"光ファイバセンサ",オーム社,東京, 1986, pp.196-201