Development of an Excitation Nonequilibrium Computation Code for Reproduction of Anomalous Radiative Heating in an Arc-jet Facility

1. はじめに

宇宙機が地球に帰還する際,高速で大気圏に突入するため, 機体前方に強い衝撃波が発生する.衝撃波の発生に伴い,衝 撃波背後の気体は高温となり,機体は過酷な加熱環境に曝さ れる.この加熱から機体を守るために,熱防御設計が必要で あるが,信頼性の高い設計をするためには,加熱量を精密に 予測することが重要となる.加熱量を予測する手段として, 風洞で流れ場を再現し,加熱量を直接計測する方法と,コン ピュータを使った数値計算により加熱量を計算で求める方 法とがある.大気圏突入時の流れ場は極超音速,高温,熱化 学的非平衡性などの特徴から,実験による再現,および計測 が困難であるため,数値計算による加熱量予測が有効となっ てくる.

1996年, Palumbo 博士らによって, 20MW アーク加熱風洞 による鈍頭物体の加熱実験と, 淀み点における輻射強度測定 が行われた(1).実験に用いられた設備の概略図を図1に示す. アークヒータは直径 0.06m, 全長 2.3m であり, 印加電圧は 1800V, 電流は 950A, ヒーター内圧力は 1.02atm であった. 超音速ノズルはスロート径 0.038m, 出口径は 0.46m であり, スロートと出口の面積比は 148、ノズルの半角は 4°であっ た.ノズル出口から供試体までの距離は 0.47m,供試体は直 径 15cm の平たい円柱で,角は 0.007m でフィレットされて いる. 試験ガスは質量比で空気 80%, Ar20%, 質量流量は 0.034kg/s, 淀み点圧は 1.197kPa であった. 輻射スペクトルは, 供試体表面の淀み点に取り付けられた MgF2 製の窓から入射 した光を、反射鏡で分光器に送ることで測定された. アーク ヒータからの光が入射するのを防ぐため光を取り入れる窓 は主流方向から15°傾けられた.測定された強度は、数値計 算による予測を大幅に上回っており、同様の異常加熱が NASA Ames 60MW Interaction Heating Facility⁽²⁾などの他の アーク加熱風洞でも確認されている.

Palumboの実験で見られた実験値と計算値の不一致について、Sakaiらの研究^{(3),(4)}では、ノズル壁面での光の反射などの理由から、上流からの輻射が観測されたのではないかという仮説が立てられているが、詳細なメカニズムは明らかになっていない. Mazoue らの研究⁽⁵⁾では Palumbo 実験におけるノズル角度などの条件に不確かさがあることが述べられている.

Fig. 1 Schematic of the arc jet facility performed by Palumbo.

航空宇宙工学コース

航空エンジン超音速流研究室 1235105 砂辺 一行

本研究では、数値計算により Palumbo 異常加熱を再現し、 そのメカニズムを明らかにすることを目的とする.異常加熱 の原因として、衝撃層内の電子励起非平衡性に着目し、衝突 -輻射モデルと流体、および輻射輸送の結合計算を行うこと で励起分布を直接計算する.本計算手法においては、流体同 士が輻射によるエネルギー交換を行うことが可能であるた め、非局所的な熱的状態を捉えることができる.また、衝突 -輻射モデルから得られた励起分布を用いて放射係数、吸収 係数を計算することから、非平衡状態における輻射スペクト ルを求めることが可能である.以上のような特徴から、上流 輻射による衝撃層内の加熱、衝撃層内輻射による主流の加熱、 衝撃層内での非平衡輻射を考慮し、Palumbo 異常加熱の再現 を目指す.

2. 数値計算法

2.1 流れ場計算

Palumboの実験における供試体周り準定常流れ場計算には、 軸対称2次元NS・熱化学非平衡・輻射輸送結合計算コード を用いた. 考慮する化学種は N, O, N₂, O₂, NO, N⁺, O⁺, N_2^+ , O_2^+ , NO^+ , e^- の 11 種である. Palumbo の実験の試験 ガスには Ar も含まれているが, 輻射強度への影響は小さい ため、今回は N2 に置き換えて計算した. 支配方程式の離散 化は有限体積法を用いて行い、数値流束評価には SLAU⁶法 を用いた.粘性流束は2次精度中心差分により評価した.空 間高次精度化には2次精度 MUSCL⁽⁷⁾法を用いた.時間積分 は陽解法で行った.熱化学非平衡モデルは並進温度と回転温 度が平衡,振動温度と電子励起温度が平衡とする Park の2温 度モデル(8)の振動-電子励起温度から、電子温度を分離した3 温度モデルを用いた. 振動-電子励起温度と電子温度の緩和 モデルには Lee の緩和時間⁽⁹⁾を用いた.電子励起非平衡性を 考慮するための衝突-輻射モデルには、 Ogino らによって開 発された空気プラズマ用の衝突輻射モデル(10),(11)を用いた. 2.2 輻射計算

吸収係数と放射係数は Matsuyama の構築した計算コード (¹²⁾を電子励起非平衡計算用に拡張し, line-by-line 計算により 求めた.流れ場に吸収されるエネルギー量を計算するため, セル中心から有限数の光線を引き,それぞれの光線上で輻射 輸送方程式を解いた.光線は θ 方向, φ 方向にそれぞれ15°刻 みで引き,総本数は266本である.全エネルギー,振動-電 子励起エネルギー,電子エネルギーに対する輻射エネルギー 生成項はそれぞれ,次式で求めた.

$$W_{rad} = \nabla \cdot \boldsymbol{q}_{rad}, \tag{1}$$

$$W_{nrad} = \nabla \cdot \boldsymbol{q}_{rad} - \nabla \cdot \boldsymbol{q}_{b-f}, \tag{2}$$

$$W_{el,rad} = \nabla \cdot \boldsymbol{q}_{b-f}.$$
 (3)

 $\nabla \cdot q_{rad}$ は総輻射吸収量、 $\nabla \cdot q_{b-f}$ は光電離による輻射吸収量であり、それぞれ次式で表される.

$$\nabla \cdot \boldsymbol{q}_{rad} = \nabla \int_{0}^{\infty} \int_{4\pi} I_{\lambda} d\boldsymbol{\Omega} \quad d\lambda = \int_{0}^{\infty} \left[4\pi\varepsilon_{\lambda} - \int_{4\pi} \kappa_{\lambda} I_{\lambda} d\boldsymbol{\Omega} \right] d\lambda \,, (4)$$
$$\nabla \cdot \boldsymbol{q}_{b-f} = \int_{0}^{\infty} \left[4\pi\varepsilon_{\lambda,b-f} - \int_{4\pi} \kappa_{\lambda,b-f} I_{\lambda} d\boldsymbol{\Omega} \right] d\lambda \,, \qquad (5)$$

 I_{λ} は輻射強度, Ω は立体角, ϵ_{λ} , κ_{λ} はそれぞれ放射係数, 吸収 係数であり, 添え字 b-f は光電離の寄与分を表す.

3. Palumbo 実験供試体周りの衝突-輻射励起非平衡計算

3.1 計算条件

供試体周りの計算格子を図2に示す.格子点数は61×61点 であり,衝撃波位置における温度上昇と壁面温度境界層を正 確に捉えるため,衝撃波と壁面に格子を寄せてある.流入境 界は左側の楕円弧であり,主流条件には表1に示す,先行研 究⁽¹³⁾で計算されたノズル流出境界値を用いる.壁は600Kの 等温壁で,非触媒性としている.

壁面に入射する輻射スペクトルは,図2に示す赤矢印の方 向に積分する.これはPalumbo実験において観測窓が向いて いる方向であり,淀み流線より仰角15°方向から淀み点へ入 射する光線である.アークヒータからの輻射加熱を考慮する ため,図2の黄色網掛けで示した範囲で,上流方向を向き, 対称軸に水平な光線では,輻射輸送計算の境界値として 12000Kの黒体輻射を与える.

Table 1	A free	stream	condition	(13)
---------	--------	--------	-----------	------

Tuble 1 Triffee Stream condition			
Density [kg/m ³]	7.71×10 ⁻⁵		
Velocity [m/s]	4679		
T [K]	600		
<i>Tv</i> [K]	3827		
Tel [K]	3827		
Mole fraction			
Ν	4.08×10^{-1}		
0	2.28×10^{-1}		
N_2	3.64×10^{-1}		
O_2	9.02×10^{-7}		
NO	1.71×10^{-4}		
\mathbf{N}^+	6.00×10^{-5}		
O^+	3.05×10^{-5}		
N_{2}^{+}	0		
O_2^+	0		
NO^+	0		
e ⁻	9.05×10^{-5}		

Fig.2 Computational grids around the test model.

3.2 Boltzmann 平衡計算

図3に供試体周りの(a)並進-回転温度 T, (b)振動-電子励起 温度 T_{ν} ,および電子温度 T_{el} の分布図を,図4に淀み流線上 の温度分布を示す.衝撃層内で振動-電子励起温度は並進-回 転温度とは非平衡状態にあるが,電子温度とはほぼ平衡とな っている.最高温度は並進-回転温度では9000K,振動-電子 励起温度,および電子温度では6900Kに達している.

Fig. 3. Temperature contours around the test model.

Fig. 4. Computed axial profiles of different temperatures.

このときの輻射スペクトルを Palumbo 実験値とともに図 5 に示す. 波長域 1200~4000Å にかけては 3000Å 付近を除い て、実験値とほぼ同じオーダーの強度が確認できるが、4000 ~9000Å では実験値の 1~10%程度の強度となっており、大 きく下回っている. スペクトル概形を構成する分子バンドを 特定するため、図5のスペクトルをバンドごとに分解し、図 6 に示す.スペクトル概形の内,波長域 1200~1500Å は N2 Birge Hopfield, 2000 \sim 3500Å /± NO γ , 3500 \sim 5000Å /± N₂⁺ 1st negative, 5000~9000Å は N₂ 1st positive および N₂⁺ Meinel で あることが分かる.よって、計算において 4000~9000Å の強 度を過小評価している原因は、その波長域にバンドを持つ N2 と N2+の励起分布にあると考えられる. 以上より, 励起分布 に Boltzmann 平衡を仮定した計算では実験値の輻射スペクト ルを再現できないことが分かり,特に N2 と N2+については励 起種の数密度をかなり低く見積もってしまっていることが 考えられる.

Fig.5 Comparison of wall-incident spectra between Boltzmann equilibrium calculation and measurement.

3.3 励起非平衡計算

図7に供試体周りの(a)振動-電子励起温度,(b)電子温度の 分布図を,図8に淀み流線上の温度分布を示す.振動-電子励 起温度は平衡計算時とほぼ変わらないが,電子温度について は衝撃波前方の上流輻射を入射させている範囲で上昇が確 認できる.入射範囲外でも衝撃波に沿うようにして温度上昇 が見られるが,これは拡散と熱伝導によって,入射範囲にあ る電子の内部エネルギーが伝わっていくためであると考え る.

Fig. 7. Temperature contours around the test model (Nonequilibrium calculation).

Fig. 8. Computed axial profiles of different temperatures (Nonequilibrium calculation).

このときの輻射スペクトルと強度の波長積分値を図 9 に 示す. N_2^+ 1st negative では強度が減少している. 5000~9000Å の強度上昇が N_2 1st positive と N_2^+ Meinel のどちらによるも のか特定するため, 図 9 を分子バンドごとに分解したものを 図 10 に示す. N_2 1st positive がスペクトル概形と重なってい ることから, 強度上昇は N_2 によるものであると分かる.

Fig.9 Comparison of wall-incident spectra between nonequilibrium calculation and measurement.

強度変化が見られた N₂ 1st positive と N₂⁺ 1st negative では, 励起分布が Boltzmann 平衡分布から変化したことが考えられ る.励起種の内, N₂ 1st positive に関わるのは B³ Π_g , N₂⁺ 1st negative に関わるのは B² Σ_u ⁺である.これら励起種の増減を 調べるため, 淀み流線上の並進-回転温度最高点における N₂ の励起分布を図 11 (a)に,振動-電子励起温度最高点における N₂⁺の励起分布を図 11 (b) に示す.平衡分布との比較のため, 各位置での並進-回転温度,振動-回転温度における Boltzmann 平衡分布を,それぞれ黒実線と黒破線で示してある.黒破線 は Boltzmann 平衡計算時の励起分布に一致する.並進-回転温

度最高点において N_2 では $B^3 \Pi_g$ が増加し、並進-回転温度における平衡値に近づいている.振動-電子励起温度最高点においては、 N_2 +の $B^2 \Sigma_u$ +が平衡計算値から減少している.

(b) N_2^+ at the highest T_n point

励起分布変化について輻射,自由電子衝突,重粒子衝突の 3 種類の励起非平衡過程がどのように作用したのか調べるため,それぞれの過程による励起種の数密度変化率 *n* procを, 合計の数密度変化率 *n* sumで規格化した値「遷移寄与割合 Crate」を次式で定義する.

$$C_{\text{rate,proc}} = \frac{\dot{n}_{\text{proc}}}{\dot{n}_{\text{sum}}}, \quad \text{proc} = \text{rad, ele, hev}, \quad (6)$$

$$\dot{n}_{sum} = |\dot{n}_{rad}| + |\dot{n}_{ele}| + |\dot{n}_{hev}|.$$
 (7)

添え字 *rad, ele, hev* はそれぞれ, 輻射, 自由電子衝突, 重 粒子衝突の寄与分であることを示す. C_{rate} の計算ステップ履 歴を図 12 に示す. ステップ数 0 は励起非平衡計算開始時を 表す. 並進-回転温度最高点の N₂ B³ Π_g 密度変化率に対する 履歴が(a), 振動-電子励起温度最高点の N₂+ B² Σ_u +に対する 履歴が(b)である. 並進-回転温度最高点において, N₂B³ Π_g で は重粒子衝突による励起が優位であることが分かる. 一方, 振動-回転温度最高点において, N₂+ B² Σ_u +では輻射による脱 励起が優位である. 以上より, N₂B³ Π_g の増加には重粒子励 起が寄与しており, N₂+ B² Σ_u +の減少には輻射脱励起が寄与 していることが分かった.

(b) N₂⁺ B² Σ_{u}^{+} at the highest T_{v} point

Fig. 12. Step histories of C_{rate} at the highest temperature points on stagnation streamline.

図 2 にて赤矢印で示した光線上における放射係数の分布 比較を,温度分布とともに図 13 に示す.分子バンドごとに 示してあり,それぞれ, (a) N₂⁺ 1st negative, (b) N₂ 1st positive である.縦軸は光線上の最大値によってそれぞれ規格化して あり,放射係数は対数表示にしてある.N₂⁺ 1st negative では 平衡計算と非平衡計算で分布はほぼ変化せず,その分布はど ちらの温度にも一致しなかった.N₂ 1st positive では,平衡 計算時は振動-電子励起温度に従う分布となっているが,非 平衡計算時は並進-回転温度に従う分布に変化している.以 上より,励起非平衡性によって,N₂ 1st positive の放射係数 空間分布を支配する温度が,振動-電子励起温度から並進-回 転温度へと変化することが分かった.

Fig. 13. Axial profiles of emission coefficients of each band.

3.4 前期解離を考慮した計算

励起非平衡計算でも、なお実験値との強度差が大きかった N₂ 1st positive の強度を上昇させる要因として前期解離がある.前期解離とは、衝突や項間交差により高振動状態 ($v \ge 12$) にある N₂ B³ Π_g が A'⁵ Σ_g ⁺に無放射遷移するときに N 原 子へと解離する現象である.前期解離の逆過程を考慮するこ とで B³ Π_g の増加が見込める.前期解離の反応速度定数とし て Geisen らの速度定数⁽¹⁴⁾を用いた.

前期解離を考慮したときの輻射スペクトルを図14に示す. 考慮していないときと比べ, N₂ 1st positive の強度が大きく上 昇しており, 5000~5700Åの範囲では Palumbo 実験値を上回 っていることが分かる. このとき,並進-回転温度最高点にお ける N₂の電子励起分布を図 15 (a)に, N₂ B³ Π_g 振動励起分布 を図 15 (b)にそれぞれ示す.電子励起分布からは B³ Π_g が増 加し,並進-回転温度における Boltzmann 平衡値よりも多くな っていることが分かる. 振動励起分布では前期解離により $12 \le v \le 18$ において増加が見られる. よって, N₂ 1st positive の強度上昇には, B³ Π_g の増加だけでなく,高振動励 起準位の増加も寄与していることが分かる. 以上のことから, Palumbo 実験値再現のためには電子励起非平衡性だけでなく, 振動励起非平衡性も考慮する必要があると考えられる.

Fig.14 Comparison of wall-incident spectra between predissociation calculation and measurement.

(a) Population of N₂ electronic excitation states

(b) Population of N₂ $B^3\Pi_g$ vibrational excitation states

Fig. 15. Population at the highest temperature T points on stagnation streamline.

4. まとめ

Palumboの実験で観測された異常輻射加熱の再現を目指し、 供試体周り流れ場について、流体・衝突-輻射モデル・輻射輸 送の結合計算コードを用いた, Boltzmann 平衡計算, 電子励 起非平衡計算,および前期解離を考慮した計算を行った. Boltzmann 平衡計算では淀み点入射スペクトルの強度が、波 長域 4000~9000Å において Palumbo 実験値を大きく下回っ た.電子励起非平衡計算により,流れ場では衝撃波上流にお いて、上流輻射による電子温度の上昇を確認した. 淀み点入 射スペクトルについては、 $N_2 B^3 \Pi_g \sigma$ 増加、 $N_2^+ B^2 \Sigma_u^+ \sigma$ 減 少により, N₂1st positive バンドの強度が上昇, N₂⁺1st negative バンドの強度が低下し, 強度分布が Palumbo 実験値に近づい た. N₂B³ Π_{g} の増加には重粒子衝突励起が、N₂+B² Σ_{u} +の減少 には輻射脱励起が寄与していることが分かった. 放射係数の 空間分布にも変化が見られ、特に N2 1st positive については 分布を決定する温度が、振動-電子励起温度から並進-回転温 度へと移り変わりを見せた. N2の前期解離を考慮した計算で は N₂ 1st positive バンドが大きく上昇し, 5000~5700Å の波 長域では Palumbo 実験値を上回る強度となった.

今後は振動状態についても励起非平衡計算を行う必要が ある.

文献

- (1) Palumbo, G., Craig, R. G., Whiting, E.W and Park, C., "Measured Specific Intensity from 130 to 900nm at the Stagnation Point of a Model in Arcjet Flow of 7.8km/sec", *Journal of Quantitative Spectroscopy & Radiative Transfer*, Vol. 57, No. 2, (1997), pp. 207-236
- (2) Michael, W. W. and Dinesh, K. P., "Excited State Chemistry

in the Free Stream of the NASA IHF Arc Jet Facility Observed by Emission Spectroscopy", AIAA paper 2011-3632, (2011)
(3) Sakai, T., Saruhashi, Y., Suzuki, T. and Matsuyama, S.,

- (3) Sakai, T., Saruhashi, Y., Suzuki, T. and Matsuyama, S., "Calculation of Radiation from a Shock Layer Flow in an Arc-Jet Facility", AIAA paper 2007-808, (2007)
- (4) Sakai, T., and Suzuki, T., "Calculation of Nozzle Throat Condition in an Arc-Jet Facility", ESA SP-629, (2007)
- (5) Mazoue, F., Chassaigne, B., and Marraffa, L., "Rebuilding of the Palumbo Experiments in Arc Jet", ESA SP-629, (2007)
- (6) Kitamura, K. and Shima, E., "A New Pressure Flux for AUSM-Family Schemes for Hypersonic Heating Computations", AIAA Paper 2011-3056, (2011)
- (7) Van Leer, B., "Towards the Ultimate Conservation Difference Scheme V, A Second-Order Sequel to Godunov's Method", *Journal of Computational Physics*, Vol. 23, No. 3, (1979), pp. 101-136
- (8) Park, C., *Nonequilibrium Hypersonic Aerothermodynamics*, John Wiley and Sons, Inc., New York, (1989)
- (9) Bourdon, A., "Electron-vibration energy exchange models in nitrogen plasma flows", Phys. Rev. E 55, 4634, (1997)
- (10) Ogino, Y. and Ohnishi, N., "A Collisional -Radiative Code for Computing Air Plasma in High Enthalpy Flow", *Shock Waves*, Vol. 21, issue 3, pp. 289-299, June, (2011).
- (11) Ogino, Y., PhD thesis, Department of Aerospace Engineering, Tohoku University, (2009).
- (12) Matsuyama, S., *Numerical Study of Galileo Probe Entry Flowfield*, PhD thesis, Tohoku University, (2004).
- (13) 砂辺一行, アーク風洞内異常輻射加熱現象の数値的再現 に向けた研究,高知工科大学卒業論文,(2019)
- (14) Geissen, H., Neuschaefer, D., and Ottinger, Ch., "Statespecific predissociation of $N_2(B^{-3}\Pi_g)$ measured by laserinduced fluorescence on a molecular beam", *Journal of Chemical Physics*, Vol. 92, issue 1, January 1, (1990), pp.104-115