NautaOTA を用いた二次 $\Delta\Sigma$ 変調器の設計と評価

Design and evaluation of Second-order $\Delta\Sigma$ modulation using Nauta OTA 1235116

上村 大輔 (回路工学研究室)

(指導教員 橘 昌良教授)

1 はじめに

今日, 計算や信号処理をディジタル領域で行う機会が圧 倒的に増えた.一方、日常生活で我々が使う物理量は依然 としてアナログであるためディジタル信号をアナログ回路 へと戻す等といった $A/D \cdot D/A$ 変換技術が必要になった.

本研究の目的は NautaOTA を用いた連続型、離散型、 フィードフォワード型の 2 次 $\Delta\Sigma$ 変調器をそれぞれ設計し、 S/N 比とノイズフロアが先行研究 [1] と比べてどの程度向 上するかシミュレーション及び実測を行った. また更なる ノイズ削減のため量子化器を 1bit から 2bit へと変更しシ ミュレーションを行った.

2 二次 ΔΣ 変調回路

本研究で設計した二次 ΔΣ 変調回路を図 1~図 3 に示す. 本研究では三種類の二次 ΔΣ 変調回路を設計した.

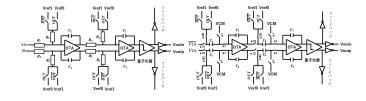


図2 離散型2次ΔΣ変調回路 図1 連続型2次ΔΣ変調回路

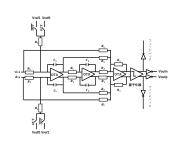


図 3 フィードフォワード型 2 次 $\Delta\Sigma$ 変調回路

3 2bit 量子化器

図4に提案した量子化器を示す.

2bit を出力させるため 1bit の量子化器を 4 つ使用した. 一つは 1bit で使用した通り積分器の出力 ($V_{inp},\ V_{inn}$) を比較 した出力を,残り3つは入力波形 (V_{inp}) と三種類のしきい 値電圧 ($V_{th1} = 0.75V$, $V_{th2} = 0.9V$, $V_{th3} = 10.5V$) を比較し, それぞれに出力を割り当てた.

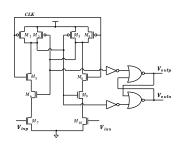


図 4 量子化器の設計回路

4 二次 ΔΣ 変調回路の FFT 結果

二次 ΔΣ 変調回路シミュレーション及び実測結果を図 5, 2bit 量子化器を使用したシミュレーション結果を図 6 に 示す. これは、フィードフォワード型の変調回路の周波数 特性である. 二次 ΔΣ 変調回路の実測結果から先行研究の 一次 ΔΣ 変調回路と比較し 6.8dB の S/N 比削減を確認でき た. また、2bit 量子化器に変更した場合、1bit 量子化器を使 用した二次 $\Delta\Sigma$ 変調回路と比較し 1.9dB の S/N 比削減を確

表 1 に二次 ΔΣ 変調回路の FFT を,表 2 に量子化器を 2bit にした際の FFT を示す.

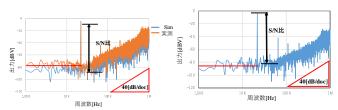


図 5 FF 型二次 ΔΣ 変調器の FFT スペクトル

図 6 2bit 量子化器を使用し た FF 型二次 ΔΣ 変調器の FFT スペクトル

表 1 $\Delta\Sigma$ 変調器のシミュレーション及び実測の S/N 比, ノイズフロア

	連続型 sim	連続型 実測	離散型 sim	離散型 実測	FF 型 sim	FF型 実測
S/N 比 [dB]	73.9	62.3	69.6	59.9	74.7	64.9
ノイズフロア [dBV]	-80	-75	-85	-70	-85	-78

表 2 $\Delta\Sigma$ 変調器のシミュレーション及び実測の S/N 比, ノイズフロア

	連続型 sim	離散型 sim	FF 型 sim
S/N比			
[dB]	75.2	68.0	76.6
ノイズフロア			
[dBV]	-85	-70	-85

5 結論

本研究では、二次の $\Delta\Sigma$ 変調回路の設計およびシミュレー ションでの評価を行い、チップへ実装し測定をおこなった. フィードフォワード型の回路において先行研究と比べ 6.8dB のS/N比改善を確認することができた。また、更なるノイ ズ削減のため 2bit 量子化器を使った二次の $\Delta\Sigma$ 変調回路の 設計およびシミュレーションでの評価を行った.

参考文献

[1] 岡崎 泰士 "Nauta OTA を用いた $\Delta\Sigma$ 変調器の設計 と評価" 高知工科大学 システム工学群 基盤工学専攻 2018