合成ゴムの薬品劣化解析

1 緒言

ゴムは、現在、工業・産業・農業用品等、様々な分野で広 く利用されており、我々の生活から切り離せない重要な材料 である.これらゴムの性能を示す重要な指標として,劣化耐 性が挙げられる.現在,様々なゴム劣化防止技術が試みられ ているが,そこでは,劣化に伴うゴムのマクロな力学特性変 化と併せて、微細構造の変化を解析することが重要となる. 材料の微細構造を解析する重要な手法として, 原子間力顕微 鏡(Atomic force microscopy: AFM)が挙げられる. AFM では鋭 利な探針と試料表面との間に働く相互作用力を検出するこ とで,材料表面の局所構造や局所的な力学特性を可視化する ことができる⁽¹⁾. また, AFM では観察を金属や半導体, 非金 属等の幅広い材料を対象に真空中、大気中、溶液中といった 様々な環境で行える.そこで,本研究では,ゴムの劣化現象, 特に合成ゴムの薬品劣化に着目して,その微視的な劣化メカ ニズムを、AFM を用いて解明することを目的とした.具体 的には、薬品劣化前後のゴム表面を AFM で観察し、劣化に 伴う微視的な構造および力学特性の変化について解析を行 った.

2 実験方法

2.1 試料作製

表1に本研究で作成した試料をまとめる.実験では、合成 ゴム試料として SBR⁽²⁾と EPDM⁽³⁾ (共に大同ゴム株式会社か らの提供試料)を用いた.各試料は、超音波カッターを用い て AFM で観察可能な試験片サイズ(5×5×1 mm)にそれぞれ 3 つ切り出したのち、純水とエタノールを用いて超音波洗浄を 5 分程度行った.洗浄後の十分に乾燥させた各試料の内、1 つはアセトン、1 つは水酸化カリウム(KOH)溶液に 5 時間程 度浸漬させ、薬品劣化処理を行った.上記の薬品処理によっ て、① 純水とエタノールで洗浄しただけの SBR、EPDM (表 1 では、SBR_{CL}、EPDM_{CL}と記載)、②アセトンで劣化させた SBR、EPDM (表 1 では、SBR_{AC}、EPDM_{AC}と記載)、③ KOH 溶液で劣化させた SBR、EPDM (表 1 では、SBR_{KOH}、EPDM_{KOH} と記載)、を作成した.

2.2 実験装置

作成した計6つの試料の表面を, AFM を用いて観察した. AFM には Oxford 社の Cypher-VRS を用いた. 観察は全てタ ッピングモードで行い, 試料表面の形状像(凸凹像)と位相像 (機械的硬さを定性的に反映した画像)を同時に取得した. カ ンチレバーには, 主に軟質材料のイメージングに用いられる AC160TSA-R3(Oxford 社製)を用いた.

Table 1 Summary of the sample preparations

	SBR	EPDM
洗浄のみ	SBR _{CL}	EPDM _{CL}
アセトン(AC)	SBR _{AC}	EPDM _{AC}
水酸化カリウム(KOH)	SBR _{KOH}	EPDM _{KOH}

システム工学群

極限ナノプロセス研究室 1210149 藤田 啓介

Fig. 1 (a). (b) AFM topographic images of SBR surface before, (a), and after, (b) acetone ultrasonic cleaning. (c). (d) AFM topographic images of EPDM surface before, (c), and after, (d) ethanol ultrasonic cleaning.

実験結果と考察

3.1 エタノール超音波洗浄に伴うゴム表面構造の変化

はじめに、試料洗浄用途で使用したエタノールがゴム表面 に与える影響をAFM 観察により検証した.図1は、(a)、(c) がそれぞれ純水のみで洗浄を行った SBR、EPDM 表面、(b)、 (d)がそれぞれ純水とエタノールで洗浄を行った SBR と EPDM を AFM で観察した結果を示している.図から、純水 とエタノールで洗浄した SBR、EPDM (表 1 の SBRct, EPDMct)の表面には多少の不純物が存在するものの、全体と して顕著な構造変化は確認されなかった.不純物は、洗浄プ ロセスとは別に外部環境が原因となる汚染によるものだと 推察される.したがって、両試料とも、エタノールを用いた

Fig. 2 (a), (b) AFM topographic, (a), and phase, (b), images of SBR after dipping in acetone for 5 h. (c), (d) AFM topographic, (c), and phase, (d), images of EPDM after dipping in acetone for 5 h.

Fig. 3 (a), (b) AFM topographic, (a), and phase, (b), images of SBR after dipping in KOH aqueous solution for 5 h. (c), (d) AFM topographic, (c), and phase, (d), images of EPDM after dipping in KOH aqueous solution for 5 h.

5分間の超音波洗浄自体は、表面に対して洗浄以外の変化を 引き起こさないと結論できる.

3.2 アセトン劣化処理に伴うゴム表面構造の変化

図 2(a),(b)は、それぞれ、アセトンで薬品処理を行った SBR(SBR_{AC})の形状像と位相像を示している.図1(b)のSBR_{CL} と比較すると、図2(a)ではSBR_{AC}の表面に、網目状の構造が 新たに生じていることが確認される.このような変化は、位 相像[図2(b)]からも定性的な硬さの変化として確認された. 一方、図2(c)、(d)は、それぞれ、アセトンで薬品処理を行っ た EPDM(EPDM_{AC})表面の形状像と位相像を示している.図 1(d)の EPDM_{CL}比べた結果、EPDM_{AC}の表面では薬品処理に 伴う顕著な変化は確認されなかった.

3.3 KOH 劣化処理に伴うゴム表面構造の変化

図 3(a), (b)に, KOH で薬品処理を行った SBR(SBRKOH)の

表面形状像と位相像を示す. 図 3(а)から SBRконでは, SBRас とは異なり, 表面の一部が部分的に暗く観察されていること が確認できる. この結果から, KOH による薬品処理が, ア セトンによる薬品処理と異なる劣化現象を引き起こすと推 察される.また,形状像[図 3(а)]の暗い領域は,位相像[図 3(b)] では明るく観察されていることから, KOH 劣化処理が定性 的な硬さにも影響を及ぼしていることが明らかである.一方, 図 3(c),(d)は, KOH で薬品処理を行った EPDM(EPDMкон) の表面形状像と位相像を示している. 図から, アセトンの場 合と同様に, EPDMкон では形状像,および位相像に顕著な 変化は確認されなかった.

4 結論

本研究では、耐久性の高いゴムの設計指針を得るために、 薬品劣化処理前後の合成ゴム(SBR と EPDM)の表面構造を AFM を用いて解析した. その結果、SBR では、アセトンと KOH で性質の異なる表面構造および機械的特性の変化が生 じることを示した. この結果は、両薬品により SBR 表面で 異なる劣化プロセスが引き起こされていることを示唆する. 一方、EPDM に関しては、両薬品による顕著な劣化は確認さ れなかったことから、薬品耐性が SBR よりも優れていると 結論できる.

文献

- (1) G. Meyer, N. M. Amer, Appl. Phys. Lett. 53, 1045(1988).
- (2) 池田裕子,網目鎖密度に傾斜をつけたスチレン-ブタジエン共重合ゴム架橋体の作成とその力学特性,日本金属学会誌 62, 1013(1998).
- (3) 谷澤卓朗, 原子間力顕微鏡を用いた EPDM の熱劣化解 析, 高知工科大学卒業論文(2020).