画像相関を用いた人工衛星画像の 精度検証手法の検討

1220017 伊藤 治人

高知工科大学 システム工学群 建築・都市デザイン専攻

本研究室ではこれまで GCOM-C1 のデータを用いて新緑紅葉マップを作成してきた.しかし,新緑紅葉マップの精度 検証は分解能が 250m のため非常に困難である.そこで GCOM-C1 の精度検証手法の確立が本研究の目的である.本研 究では,UAV 画像を用いて GCOM-C1 の精度検証をしたいが,GCOM-C1 の分解能が粗く精度検証が難しい,そのため高分 解能の人工衛星である Sentinel2 を中間データとして使用した.UAV と Sentinel2, Sentinel2 と GCOM-C1 で画像相関 を見ることで精度検証を行う.UAV と Sentinel2 の相関についてはr \geq 0.7 より高い相関が確認できたため,SENTINEL2 の精度検証が可能と思われる.次に GCOM-C1 と Sentinel2 について相関を見ると R と B については r \geq 0.7 より高い 相関が確認できたが,ばらつきが大きい.G については 0.5 \leq r<0.7 より高い相関が確認できなかった.これらの問題 については,ばらつきの大きいピクセルを抽出した上で,土地被覆の詳細を検討し,各センサの感度特性についても 考慮する必要がある.

Key Words: Sentine12, UAV, GCOM-C1

1. はじめに

本研究では 2017 年に JAXA が打ち上げた人工衛 星 GCOM-C1 と 2015 年に ESA が打ち上げた人工衛 星 Sentinel2 を使用した.

GCOM-C1 は、気候変動を観測すること目的として いる.GCOM-C1 に搭載されている観測装置は SGLI(多波長光学放射計)である.SGLIは、地上から の光を、近紫外線から可視光線、赤外線までの 19 のバンドに分けて観測している.19 のバンドから 目的に応じてバンドを選択することで、陸域から 大気、海洋、雪氷まで様々な対象を観測でき る.SGLI は SGLI-VNR(可視・近赤外放射計部)と SGLI-IRS(赤外走査放射計部)の2つの放射計によ って構成されているが本研究では SGLI-VNR を利 用した.SGLI-VNRの観測バンドを表-1に示す.

センサ	バンド番号	波長	波長幅	分解能
		VNR,S\	VI:(nm)	
		TIR:	(µm)	
	VN1	379.9	10.6	
	VN2	412.3	10.3	
	VN3	443.3	10.1	
	VN4	490.0	10.3	
SGLI-VNR	VN5	529.7	19.1	250m
	VN6	566.1	19.8	
	VN7	672.3	22.0	
	VN9	763.1	21.9	
	VN10	867.1	20.9	

表-1 GCOM-C1 バンド情報

図-1 新緑マップ(2020)

本研究室ではこれまで GCOM-C1 のデータを用い て新緑紅葉マップを作成してきた.しかし,新緑紅 葉マップの精度検証は分解能が 250m のため非常 に困難である.そこで GCOM-C1 の精度検証手法の 確立が本研究の目的である.

一般的に人工衛星画像の精度検証は,UAV 画像が 使用されている.UAV 画像は本学の里山工学のホー ムページからダウンロードできる.UAV による植生 観測エリアは,里山研究フィールド内 300×300m で分解能が 20cm である.

一方,GCOM-C1の分解能は250mのため大きな開き がある.そのため高分解能の人工衛星である Sentinel2を中間データとして3つの観測スケー ルの異なるオルソ画像により精度検証を行 う.Sentinel2 に搭載されたセンサは MSI(マルチ スペクトルイメージャ)で,観測頻度は5日に1度 である.本研究で使用した使用バンドを表-2に示 す.

	センサ	バンド番号	波長(nm)	波長(nm)	分解能	GCOM-C1対応バンド(nm)
	MSI	B2	490	65		VN4: 490.0
		B3	560	35	10m	VN6: 566.1
		B4	665	30	TOUL	VN7: 672.3
		B8	842	115		VN10: 867.1

表-2 Sentinel2 バンド情報

精度検証の手順として、はじめに UAV 画像と Sentinel2の画像相関を検討し、次に Sentinel2 と GCOM-C1の画像相関を検討する.このように観 測スケールが大きく異なる場合でも段階的に検討 が行えれば人工衛星における精度検証手法の1つ になりえる.

2. UAV 画像と Sentine 12 の画像相関

2.1 使用データ

本研究で使用した UAV 画像と Sentinel2 の観測 日時を表-3に示す.

表-3 左:UAV 画像 右:Sentinel2 使用データ

	UAV画像	Sentine12
観測日時	2019/4/8 11:11	2019/4/4 11:06
	2019/11/17 11:06	2019/11/15 10:58
	2020/3/25 11:29	2020/3/24 10:58
	2020/10/24 10:59	2020/10/25 10:58

UAV 画像は 2019 年 4 月 5 日から 2021 年 1 月 5 日 までのデータが公開されている. その中で観測日 時が 1 週間以内且つ天候が晴れの日で検索をかけ ると 4 時期のみとなった. (UAV 画像の幾何補正精 度は 0.002m 以内で, 分解能が 20cm である.)

Sentinel2の衛星画像は Python の Pandas ライブ ラリーを用いて RGB 合成を行ない, Geo Tiff 形式 で保存した.

2.2 幾何補正

Sentinel2 の画像は位置ずれがあるため, Python の cv2 ライブラリーを用いてテンプレートマッチ ングを行なった. 20×20 ピクセルの Sentinel2 の 画像(図-3)を UAV 画像(図-2)上で 20cm ずつ平行 移動させることで残差が最小となるように幾何補 正を行なった.

2.3 分解能の統一

UAV 画像と Sentinel 2の分解能が異なるので UAV 画像の分解能を 0.2m から 10m にダウンスケール した.ダウンスケールの手法は UAV 画像の 50*50 ピ クセルの RGB 値の平均値を1 ピクセルの値とした. 変更前後の UAV 画像(図-2)と Sentinel2(図-3)を 示す.

図-2 UAV 画像

⊠-3 Sentinel2

4 画像相関の結果

幾何補正し、分解能統一後のUAV 画像と Sentinel 2 の衛星画像で相関を見た.サンプルデータは QGIS 上のポイントサンプリングツールを用いて UAV 画像のピクセルに対応した Sentinel2 のピク セルを取得した.作成したグラフを図-4に、回帰分 析の結果を表-4 に示す.

図-4 UAV 画像と Sentinel2の散布図(R)

表-4 UAV 画像と Sentinel2 の回帰分析結果

UAV画像:観測日	Sentinel2:観測日	画像相関(R)	画像相関(G)	画像相関(B)
2019/4/8	2019/4/4	0.78	0.80	0.79
2019/11/17	2019/11/15	0.76	0.83	0.86
2020/3/25	2020/3/24	0.84	0.85	0.90
2020/10/25	2020/10/24	0.77	0.81	0.85

すべての年月で相関が r≧0.7 より正の強い相関 が得られたが,図-4 をみると観測結果が非線形で あるという問題が見られた.

2.5 UAV のカメラの特性

前節の観測結果が非線形である問題を確かめる ため、UAV 観測で使用されたカメラの特性を確認 した.はじめに、イラストレータを用いて 11 段階 で表現された Gray Scale 画像を作成した.そし て UAV カメラで作成した Gray Scale 画像を撮影 し、RAW 形式 14 枚を保存した.このままでは 14 シ ーンが重なっておらず,同じポイントの色情報が 取得できないため QGIS 上のジオリファレンサー を用いて投影変換を行なった.

図-5 Gray Scale 画像

14枚の R(赤)の11 段階の情報を取得し14枚の R のそれぞれの段階的の平均値を使用しグラフを作 成した.(図-6)図-6から UAV カメラの特性が原因 で非線形であることが確認できた.計測のカメラ でなく,映像作成用のカメラであることが考えら れる.

- 3. Sentinel2・GCOM-C1の画像相関
- 3.1 使用データ

表-5 Sentinel2とGCOM-C1使用データ

	Sentine12	GCOM-C1	
	2019/4/4 11:06	2019/4/4 10:35	
観測日時	2020/10/25 10:58	2020/10/25 9:55	

GCOM-C1 についても Sentinel2 に日付を合わせる ため, JAXA の提供しているレベル 2 プロダクトの RSRF (地表反射率)を利用した.しかし, GCOM-C1 の 衛星画像の中に対象地域が入っていないなど問題 があり, 前章における 4 時期のうち使用できたの は 2 時期のみとなっている.

UAV 画像の観測範囲では GCOM-C1 が 1 ピクセルの 情報しか対応しないため, UAV 画像周辺の 5km を検 証データの範囲とした.

3.2 GCOM-C1の画像化のための Geo Tiff ファ イル変換

GCOM-C1 はダウンロードで得られる衛星データ が HDF5 形式なので画像化できない. 画像化には地 球観測衛星プロダクトフォーマット変換ツールを 用いて Geo Tiff 形式に変換した.

3.3 幾何補正

GCOM-C1 は分解能が粗く,平行移動での幾何補正 では位置精度が不足していた.そこで,QGIS上のジ オリファレンサーを用いて,四国全域で基準点を 11 点準備して Sentinel2 を基準に回転も考慮した 幾何補正を行なった.

3.4 分解能統一

2-3 と同様の目的で, Sentinel2 の衛星画像の分 解能を 10m から 250m に変更した.

[←]変更前

図-7 左:Sentinel2 右:GCOM-C1

3.5 画像相関

2-4 と同様の方法で各ピクセルの RGB 情報を取得 しグラフを作成したものを図-8 に,回帰分析の結 果を表-5 に示す.

図-8 Sentinel2 と GCOM-C1 の散布図

表-5 Sentinel2 と GCOM-C1 回帰分析結果

日付	画像相関(R)	画像相関(G)	画像相関(B)
2019/4 /4	0.79	0.67	0.76
2020/10/24	0.87	0.68	0.87

すべての R と B の相関が r \ge 0.7 より強い相関が 得られたが、2019 年 4 月の散布図のばらつきが大 きい.G については強い相関は見られない.次に Sentinel2 の画像では斜面補正が施されているた め、GCOM-C1のデータも正規化処理することで比較 を試みた.正規化処理は式(a)を用いた.

$$R_e(i) = rac{r_e(i)}{\sum_{i=1}^{N} r_e(i)}$$
 (a)

R_e:正規化反射 r_e:反射率

N:総バンド数 i:バンド番号

正規化処理された GCOM-C1 のデータと Sentine12 のデータでグラフを作成した. 作成したグラフを 図-9, 回帰分析結果を表-6 に示す.

図-9 正規化後の散布図

表-6 正規化後の回帰分析結果

日付	画像相関(R)	画像相関(G)	画像相関(B)
2019/4 /4	0.64	0.55	0.63
2020/10/24	0.67	0.54	0.59

結果は正規化処理後の画像相関の方が全体的に 低くなってしまっている.ばらつきに関しても解 消できなかった.正規化によって地形補正以上に 明るさが統一されてしまうことが原因だと考えら れる.

4. おわりに

本研究で UAV と Sentinel2 については,非線形で あるが強い相関が得られた.非線形の原因も UAV のカメラであることが確認できたので Sentinel2 の精度検証は行うことが可能と思われる.

GCOM-C1 と Sentinel2 については R と B につい ては高い相関が見られた.しかし,ばらつき大きい 時期もあった.

Gについては2つのデータで共通して画像相関 が低い.Gに値するバンドはSentinel2の B3(560nm)と,GCOM-C1のVN6(566.1nm)は,波長が ほぼ同じにも関わらず画像相関がGのみ低いので 問題である.これらの問題については,ばらつきの 大きいピクセルを抽出した上で,土地被覆の詳細 を検討し,各センサの感度特性についても考慮す る必要がある.

参考文献

- 1) 高木方隆 国土を測る技術の基礎
- 高見海都 地球観測衛星 GCOM-C1 を用いた新 緑紅葉経過マップの作成 2019 年度
- 花井洋沼 2018 年度学士論文 人工衛星を用 いた 10 年間の植生変化
- 4) 宇宙航空研究開発機構(JAXA) 気候変動観測 衛星「しきさい」データ利用ハンドブック