ミスト CVD 法による α-(Al_xGa_{1-x})₂O₃ 成膜とその特性

Growth and characterization of α-(Al_xGa_{1-x})₂O₃ thin film using Mist CVD

システム工学群

材料革新サスティナブルテクノロジー研究室 1220086 須佐美 大夢

1. 背景

1947 年にゲルマニウム材料を用いた点接触型トランジス タが、翌1848年に接合型トランジスタがアメリカのベル研 究所で発明されて以降,世界中で半導体デバイスの開発が急 速に進められた[1]. それ以降高まる需要に答えるよう半導体 デバイスは多くの進化を重ねたが, 主に電力の変換を行うパ ワーデバイスの進歩によって,機器の高性能化や小型化,大 幅な省エネルギー化が実現されてきた^[2].パワーデバイスの 材料には Si が広く使われてきたが、化石燃料に替わる新エ ネルギーの創出と並行して, 革新的な省エネルギー技術が世 界規模の大きな課題である. そのため, 現状の Si よりもさ らに高耐圧,低損失なパワーデバイスの実現が期待されるシ リコンカーバイド(SiC)や窒化ガリウム(GaN)といったワイド バンドギャップ材料が注目され,世界中で盛んに研究開発が 進められている[1]. 我々の研究グループではさらにバンドギ ャップが大きく,性能向上が望める酸化アルミニウムガリウ ム{ α - (Al_xGa_{1-x})₂O₃ } に注目し、開発を進めている.本研究で はこの酸化アルミニウムガリウムを用いた、より高性能なパ ワーデバイスの作製を目的とした.主要な半導体のバンドギ ャップを表1に示す。

Table.1 Band Gap of Major Semiconductors ^[3]

	Si	4H-SiC	AlGaN	α-AlGaO
バンドギャップ (eV)	1.1	3.3	3.4 - 6.4	5.3 - 8.7

2. 先行研究と目的

先行研究では、Al 源と Ga 源の原料ガス供給量を調整する ことによって α -(Al_xGa_{1-x})₂O₃ の組成比制御に成功している. そのときのサンプルの XRD 測定結果を図 1 に示す. 図内左 上のグラフはロッキングカーブ測定結果である.酸化ガリウ ム(α -Ga₂O₃)のピークは 40.3°であり、酸化アルミニウム (α -Al₂O₃)のピークは 41.7°である.この実験により組成制御 には成功したが、膜品質に関する調査は進んでいない.そこ で本研究ではパワーデバイスの作製を目指し、 α -(Al_xGa_{1-x})₂O₃ 薄膜の結晶性、導電性、表面荒さ、および、 組成比を制御、向上させる技術の開発を目的とした.

3. ミスト化学気相成長法

ミスト化学気相成長法(ミスト CVD)は、それぞれの原料溶 液を個別にミスト化しミスト混合器で撹拌した後、ファイン チャネル (FC) 式反応炉に供給して成膜を行う手法である. 以下では今回の実験における装置構成について簡単に示す.

3.1 Fine Channel 式反応炉

ミスト CVD は反応炉の違いによるいくつかの方式が存在 するが、本研究では図2に示す Fine Channel 式反応炉を用い た. 左部の原料供給部では超音波によって溶液がミスト化さ れ、キャリアガス(c.g)によって右部の FC 式反応炉に運ばれ る. FC 式反応炉に搬送された原料ミストガスは, 整流部で 整流された後急激に狭くなった峡差二平板構造を有する反 応空間に導入される.反応空間に導入された原料ミストガス は効率よく加熱され反応温度に達し,基板上に薄膜を形成す る.

3.2 まぜまぜ器

今回の実験では成膜に複数の原料を使用するため図3に示 すまぜまぜ器を使用した.これはそれぞれの原料供給部から 搬送されたミストを集め,異なる原料ミストを均一に分散し た状態で成膜部まで導入することを可能にするなど、ミスト 流の特性を最大限に活かすことが可能なシステムの1つであ る.一般に、混晶膜を形成する際には予め複数の原料を1つ のビーカーにまとめる.原料によっては原料を混合した時点 で化学反応が起こり、沈殿が起こる恐れがある.まぜまぜ器 があることによりそれぞれの原料同士の反応を気にするこ となく cg 比を変えるだけで組成制御ができ、支援剤の供給 も容易になる.

Fig.3 Schematic of MAZE MAZE KI

4. 研究内容

本研究では、ガリウムアセチルアセトナート{ $Ga(acac)_3$ }、 アルミニウムアセチルアセトナート{ $Al(acac)_3$ }を前駆体とし て薄膜作製を行い、以下に示す項目に関して研究を行った. (a) 総流量が α -(Al_xGa_{1-x}) $_2O_3$ 成膜に与える影響の調査

総流量を変化させてα-(Al_xGa_{1-x})₂O₃ 薄膜作製を行い,その 影響や材料特性について調査した.

(b) 組成比変化実験及び表面粗さの調査

項目(a)で得られた知見をもとに c.g 比を変化させ,成膜を 行なった.また,作製したサンプルの表面粗さを調査した.

5. 総流量が与える影響についての調査結果

様々なパラメータを変化させα-(Al_xGa_{1-x})₂O₃ 薄膜の成膜を 行なった結果, 成膜温度, 総流量が成膜に大きな影響を及ぼ すことが判明した。実験条件や結果に関する詳細は本文中で 詳しく述べ、 ここでは総流量が薄膜の成膜に与える影響につ いて述べる. 総流量を 3.5~20.0 L/min まで変化させ作製した サンプルの XRD 測定結果を図 4 に示す. 各グラフの左部に 示した値はガス総流量,tの値はエリプソメトリーにより測 定した膜厚を表す. 3.5 L/min から 12.0 L/min にかけてピーク 位置はより高角側に位置しており, 膜厚は厚くなった. これ はAl源Ga源の熱分解速度が異なるためであると考えられる. 本実験で利用している FC 式反応炉では, 原料ガスは FC に 10~20 mm も流入すれば設定温度に至る. また総流量は反応 炉内の原料流速に影響し,総流量が少なければ遅く多ければ 速くなる.もし原料流速があまりにも遅ければ,反応炉に設 置されている基板に到達する前に原料が反応しきってしま う可能性がある.この実験では12.0 L/minまで総流量を増や すほど、つまり原料流速を上げるほど薄膜中の Al 組成比が 高くなっていることから、Al 源の熱分解速度が Ga 源よりも 速いということが示唆される. また膜厚は総流量 12.0 L/min で最大となる.以上より,総流量 12.0 L/min で成膜を行うこ とでAIを十分に膜に取り込み,効率的な成膜が可能である.

組成比変化実験及び表面粗さの調査結果 作製条件

薄膜作製条件を表 2 に示す.希釈ガス(d.g)は Ga 源と Al 源それぞれ総流量が 7.0 L/min (全体の総流量 12.0 L/min)とな るようにした.本実験は c.g 比を変えた際の表面粗さの変化 を測定することを目的としている.膜厚に対し表面粗さが比 例する可能性も否定できないため,膜厚に差がある場合正確 な表面粗さの評価ができない.そのためすべての膜厚が 170±10 nm となるよう成膜時間を調節し実験を行なった.

Table.2 Ga ₂ O ₃	growth	condition
--	--------	-----------

Date	:	211201		
		А	В	
Solute	:	Ga(acac)3 a), HCl b)	Al(acac)3 c), HCl p)	
Solvent	:	Deionized water d)		
Solution concentration	:	0.02 mol/L	0.04 mol/L	
Substrate	:	c-plane sapphire ^{e)} , Quartz ^{f)}		
Substrate temperature	:	450 °C		
Growth time	:	8 - 24 min		
Carrier gas	:	N2, 0.5 - 5.0 L/min	N2, 0.0 - 4.5 L/min	
Dilution gas	:	N ₂ , 1.0 - 5.5 L/min	N ₂ , 1.5 - 6.0 L/min	
Ultrasonic transducer	:	2.4 MHz, 24 V - 0.625 A, 3 g)		

a) Gallium acetylacetonate ; 99.99% , Sigma-Aldrich

b) Hydrochloric acid ; 35-37% , Wako Pure Chemical Industries

c) Aluminum acetylacetonate ; 99.99% , Sigma-Aldrich

d) Merck Millipore, 18.2 MS

e) Kyocera

f) Ichikawa Glass

g) HM-2412, HONDA ELECTRONICS (frequency, applied voltage – current, number)

6.2 実験結果

XRD 及び AFM 測定結果を図 5 に示す. XRD 測定結果の 各グラフの左側及び AFM 取得画像左下には, Ga 源と Al 源 の c.g 比を示した. また AFM 取得画像左上には,表面粗さの二乗平均平方根(RMS)を記載した.

XRD 測定結果より, 先行研究同様 c.g 比による組成比の制 御に成功した.また, Ga/Al = 5.0/0.0 のサンプルでは 39°付近 にピークが見られた,これはイプシロン構造の酸化ガリウム (組成式 ε-Ga2O3)のピークである.先行研究より酸化ガリウム の成膜時にまれに現れるが,詳しい発生原因は分かっていな い^[4].これが膜品質にどれほどの影響を与えるかも不明であ り,パワーデバイス作製に影響があれば改善していく必要が ある.

AFM 測定結果より,表面粗さは Al の比率が増加すると粗 くなることを確認した. GaCl₃を用いてα-Ga₂O₃を作製する 先行研究では HCl を適切に支援することで表面粗さの改善 に成功しており^[5],今後は同様の方法で Al の比率が高い条 件での表面粗さの改善に着手する.

Fig.5 XRD and AFM results (left : XRD, right : AFM)

7. 結言

本研究では、パワーデバイス作製を目的としたミスト CVD 法による高品質な α -(Al_xGa_{1-x})₂O₃の開発に取り組んだ.総流 量を変化させた実験より Ga源と Al源の熱分解速度の違いを 確認し、総流量を 12.0 L/min とすることで効率的な成膜が可 能となった.また c.g 比の変化により組成比制御に成功し、 Al の比率が高い薄膜ほど表面粗さが悪化することを確認し た.今後の展望として HCl やその他の支援剤の導入、他の実 験条件の変更などにより表面粗さの改善に取り組む.表面粗 さの改善が見られた場合にはコンデンサ作製に取り組み、次 世代のパワーデバイスの開発を目指す.

8. 参考文献

[1] 谷内利明 監修, "パワー半導体デバイス", オーム社

[2] トランジスタ技術 SPECIAL 編集部, "ワイドギャップ半導体の研究", CQ 出版

[3] 岩室憲幸, "次世代パワー半導体の高性能化とその産業展開", シーエムシー出版

[4] 川西善朗, 高知工科大学卒業論文(2020)

[5] 安岡龍哉, 高知工科大学修士論文(2020)