楕円ノズルを用いた小型ジェットエンジンの性能及び騒音評価

Performance and Noise Evaluation of a Small Jet Engine with an Elliptical Nozzle

システム工学群

航空エンジン超音速流研究室 1220107 野老山 将悟

1. 緒言

今日の航空機が発生させる騒音に対して国際的な規制が敷 かれており,航空機輸送量の増加に伴い騒音の規制値は年々 厳しくなっている.そのため航空機の騒音を低減させること は重要な課題の一つである.航空機から発生する騒音は機体 騒音とエンジン騒音の2つに分類される.エンジン騒音には ジェット騒音やファン騒音,燃焼器騒音などがある.本研究 では離陸時に大きな割合を占めるジェット騒音⁽¹⁾に着目し た.

ジェット騒音を低減させる取り組みの一つとして排気ノズ ルの形状を利用した方法がある.その方法の中でも実機へ採 用されているものとしてシェブロンノズルがあり,これはノ ズル吹き出し口を周方向へ鋸状の凹凸形状にすることで縦渦 を誘起し,排気ジェットと周囲空気の混合を促進させ,低騒 音化を実現させている.しかし,問題点として巡航時の推力 低下が挙げられる.

そこで本研究では,推力低下を最小限に防ぎ,ジェット騒音を低減させる新しい/ズル形状の提案を目的とし,小型模型用ジェットエンジンを用いた実験により/ズル形状の違いによるエンジン性能と騒音の評価を行った.

Fig. 1 Testing equipment.

• ~ . .

T 1 1 **T** '

Table 1 Engine specification.				
Mass	1.59	[kg]		
Engine size	φ 112×320	[mm]		
Maximum thrust	160	[N]		
Maximum rotational speed	125,000	[rpm]		
Maximum exhaust temperature	750	[°C]		

実験装置と実験方法

2.1 実験装置

実験に用いた小型模型用ジェットエンジンは JetCat 社製の P160SX である.図1に実験装置,表1に P160SX の仕様を 示す.燃料にはジェットエンジン用燃料である JetA-1 に容 積比が 5%のタービンオイル AeroShell Turbine Engine Oil 500 を混ぜた混合油を使用した.

インテークパイプの上流はベルマウス形状になっており, ベルマウスを覆うようにエンジン内への異物流入防止と流入 空気の整流を目的とした流入空気整流装置(Inflow Control Device, ICD)を設置した.また,インテークパイプとテイル パイプには温度を測るためのK型熱電対と全圧及び壁面静 圧を測定するためのチューブが取り付けられている.推力の 測定には P160SX の下部に取り付けてある共和電業社製のビ ーム型ロードセル LUB-30KB を使用した.本研究では各種 ノズルをテイルパイプに取り付けて実験を行う.

実験にはノズル出口形状が真円形状であるベースノズル (Base)と、扁平率が異なる2種類の楕円ノズル(EL-α, EL-β) を使用した.図2に実験に使用したノズル、表2に各ノズル の寸法を示す.実験では、楕円の長軸が水平な向き(以下, HL)と、鉛直な向き(以下, VL)の2パターン計測し、ベース ノズルと合わせて計5パターンの計測を行った.

Base $EL-\alpha$ $EL-\beta$ Fig. 2 Base nozzle and Elliptical nozzles.

Table 2 Nozzle dimensions	5.
---------------------------	----

Nozzle type	Base	EL-α	EL-β
Nozzle length [mm]	46.0		
Nozzle outlet diameter [mm]	49.0		
Nozzle outlet major axis [mm]		55.0	60.0
Nozzle outlet minor axis [mm]	\sim	43.6	40.0
Flattening	0.000	0.207	0.333

騒音の測定には 20Hz~80kHz まで測定可能なアコー社製 のプリアンプー体型マイクロホン TYPE 4156N(TYPE2)を用 いた. 騒音の録音には Zoom 社製のフィールドレコーダー ZOOM F6 を使用し, ビット数 24bit,サンプリング周波数 192kHz, wav 形式で録音をした.

2.2 実験方法

本研究は高知工科大学香美キャンパスのグラウンドで実施 した.マイクロホンはジェット軸から下流に向かって反時計 回りに0=30,35,40,45,50,55[deg]の位置に設置した. エンジン回転数が最高回転数に対して約50,60,70,80, 90[%]で推力をはじめとするエンジン性能のパラメーターを 20秒間計測し,騒音は5秒間計測した.また,誤差範囲の 確認のため各回転数で3回データの取得を行った.図3にマ イクロホンとエンジンの位置関係を示す.ノズル中心からマ イクロホンまでは10mとした.

Fig. 3 Noise measurement.

実験結果と考察

図4に推力,図5に燃料消費量の計測結果を示す.今回の 実験では回転数が90%で安定せず,一部誤差範囲が大きくなっている.楕円ノズルは推力及び燃料消費量でBaseと同一曲 線を示し同様な値であると確認された.また推力,燃料消費 量において楕円ノズルの向きや扁平率の影響が少ないことを 確認した.これは,楕円のノズルのノズル出口面積がベース ノズルの出口面積と等しいためであると考えられる.

Fig. 4 Corrected rotation speed and corrected thrust.

Fig. 5 Corrected rotation speed and corrected fuelconsumption.

騒音測定に関しては修正回転数90%にて回転数が不安定で あるため、比較的同じ回転数で運転できた修正回転数80%で の比較を行った.また騒音の評価には音圧レベルの時間平均 値である等価音圧レベルLeqで評価した.図6に修正回転数 80%で Overall の騒音測定結果を示す.また、図7に参考とし て Solidworks flow simulation の粘性解析による、ジェット軸か らの距離を横軸にとった Base、EL-α、EL-βの長軸上及び短軸 上のノズル出口付近の流速分布を示す.なお流入境界におけ る主流速度は回転数80%時におけるベースノズルの計測結果 から128m/s とした.

図6において, Base と楕円ノズルを比較するとBaseは35deg ~40deg の間, 楕円ノズルは 40deg でピークを迎えており指向性の違いが見られた.また, Base のピーク角度及び, 楕円 ノズルのピーク角度に着目すると,ノズルの向きによらず扁 平率が大きいほど騒音が低くなり,また Base よりも小さい傾向であった.

次に楕円ノズルの HL に着目すると各角度において Base 及 び楕円ノズルの VL よりも低くなった. 図7より Base と楕円 ノズルを比較すると長軸側の最大流速は Base の最大流速よ りも小さいことがわかる.また,楕円ノズルのみ比較すると 短軸側の最大流速と長軸側の最大流速の差が、EL-α では約 3m/s, EL-β では約 5m/s であり長軸側の方が流速は小さく, 周 方向で流速が一様ではないことがわかる. これは長軸側断面 が短軸側断面より絞りが緩いため、流速が短軸側よりも加速 されなかったからだと考える.ジェット騒音は流速の8乗に 比例(2)することが知られており、楕円ノズルの長軸側の噴流 によって発生する騒音は Base 及び短軸側より小さいと考え られる.また、各マイクロホンが計測している音は、計測に 使用しているマイクロホンが音場型マイクロホンであり、マ イクロホンに対して正面に入ってくる音を感度良く計測する ことから、ノズルに向けているマイクロホンの延長線上にあ る音源から発生した音を主に計測すると考えられる. ジェッ ト騒音は噴流と周囲空気とせん断領域が音源になることから, マイクロホンからの延長線と噴流との交差する点で発生した 音を主にマイクロホンは計測していると考えられる.図8に EL-β HL の噴流と 30deg のマイクロホンからの延長線との交 差の様子を,図9に EL-β HL の噴流と 55deg のマイクロホン からの延長線との交差の様子を、図10にノズルの排気側から 見た時の 30deg と 55deg からの延長線を示す. なお, 延長線 の直径は計測に使用したマイクロホンと同じ径である.図8 と図 10 より, 30deg からの延長線は長軸方向の噴流と交差し ており、ノズルの排気側から見ると延長線は長軸側にあるこ とから, 30deg からの延長線は主に長軸側付近から出ている 噴流と交差していることが考えられる.次に図9と図10よ り,55degからの延長線も長軸方向の噴流と交差しており,ノ ズルの排気側から見ても延長線は長軸側にあることから, 55deg からの延長線も長軸付近から出ている噴流と交差して いると考えられる. また, 30deg~55deg の間のマイクロホン からの延長線も計測点が同じ円周上にあることから長軸付近 から出ている噴流と交差することが考えられる. これらのこ とから楕円ノズルの HL の場合, 各角度におけるマイクロホ ンは長軸側の噴流によって発生した騒音を主に計測している と考えられる.

よって,長軸側の流速が Base 及び短軸側よりも小さいこと から騒音も小さくなり,また楕円ノズルの HL の場合,マイ クロホンは長軸側の騒音を計測すると考えられることから各 角度で騒音が小さくなったと考えられる.

Fig. 8 Jet in EL- β and extension from 30deg microphone.

Fig. 9 Jet in EL- β and extension from 55deg microphone.

Fig. 10 Extension of 30deg and 55deg when viewed from exhaust side.

結言

本研究では小型模型用ジェットエンジンを用いてノズル形 状の違いによるジェットエンジン性能及び騒音の計測を行っ た.その結果,楕円ノズルとベースノズルは推力及び燃料消 費量に明確な差はなく,扁平率が大きくなるほどベースノズ ル及び楕円ノズルのピーク角度における騒音が低くなる傾向 であった.また,実験結果の補完として Solidworks flow simulation を用いることで噴流の流れを解析した.その結果長 軸側の最大流速はベースノズルよりも小さくなることがわか り,また実験において長軸側の流速によって発生した騒音を 計測した結果,騒音は小さくなったことから長軸側の騒音は ベースノズルよりも小さくなると考えられる.このことから, 楕円ノズルはエンジン性能に大きな変化を与えず,騒音を低 減させるノズルとして有効であると考えられる.

今後は楕円ノズルとシェブロンノズルの比較実験を行うこ とで、エンジン性能や騒音低減において楕円ノズルの優位性 を調査することを検討している.

文献

- (1) 大石勉, "航空機騒音の低減対策について",日本音響学会誌,73巻11号 (2017), pp. 725-730.
- (2) Michael James Lighthill, "On sound generated aerodynamically I. General theory", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211, No. 1107 (1952), pp.564-587.