CES 露出柱脚の構造性能に及ぼす軸力比の影響に関する研究

合成構造	繊維補強コンクリート	復元力特性
軸力	終局耐力	静的載荷実験

1. はじめに

内蔵鉄骨および繊維補強コンクリートから構成される CES (Concrete Encased Steel)構造は鉄骨鉄筋コンクリー ト構造の優れた構造性能を有しつつ,鉄筋の省略による 施工の簡略化を実現した新たな構造形式である。

CES 構造の柱脚では,鉄骨を基礎に埋め込んだ埋込み 柱脚および鉄骨をベースプレート(以下,BP)とアンカ ーボルト(以下,AB)で固定した露出柱脚の2種類の柱 脚形式が考えられる。本研究で取り扱う露出柱脚は基礎 製作の後に柱鉄骨の建方が可能である。部材内の鉄筋を 省略した CES 構造の露出柱脚では,BPの形状とABの配 置に高い自由度があり,その特徴を活かして高い耐震性 能を期待することが可能である。しかし,これまでに CES 露出柱脚の研究は行われていない。

以上を背景として本研究では,CES 露出柱脚の復元力 特性と破壊性状等の把握を目的として軸力比を変数とし た試験体の静的載荷実験を実施した。

2. 実験概要

2.1試験体

試験体は実大の約 1/3 スケールのもの 3 体である。図 1 に試験体の形状および断面を,表1に試験体一覧を示す。 柱コンクリート断面 $_{b} \times _{c}D$ は 300mm 角,内蔵鉄骨は BH-200×150×6×9 である。この柱断面は,後述の柱軸力比 $N/N_{o}=0.2$ の際の鉄骨および CES 柱全体の曲げ耐力の比率 を 0.4 程度 ¹⁾となるように設定させた。柱脚から加力位置 までの高さ h は 600mm(せん断スパン比 $M/Q_{c}D=2.0$)であ る。BP の厚さは 50mm として,BP 面外降伏を防止した。 敷モルタルの厚さは 50mm である。AB は 4-M24(定着長 $l_{b}=480$ mm)として,柱断面の外側の四隅に配置した。ス タブには,鉄筋コンクリート基礎を模擬した主筋および せん断補強筋を配し,AB 周辺には縦筋および帯筋をそれ ぞれ配した。

実験変数は柱軸力比 N/N₀(N:作用軸力, N₀:軸圧縮耐 力で式(1)および(2)より算出)である。軸力比を 0.0, 0.1 および 0.2 として,試験体 E0, E1 および E2 の数値に対応 させた。

$$_{c}r_{u} = 0.85 - 2.5 \ _{s}p_{c} \tag{2}$$

ここで, _cA: コンクリートの断面積, _の: コンクリート

1220121西野 天駿*1指導教員鈴木 卓

武 河 天 1平				LZ
実験	軸力比 N/N₀	0	0.1	0.2
変数	軸力 N(kN)	0	425	850
	∬ b x ₀D 面置	300 x 300		
柱	せん断スパン比	2.0 (<i>h</i> =600 mm)		
	鉄骨断面	BH-200 x 150 x 6 x 9 (SS400)		
	モルタル厚 (mm)	50		
柱脚	ベースプレート	ースプレート PL-50 x 550 x 550		
	アンカーボルト	4-M24 (ABF	R400,定着县	長さ 480mm)
		S H	teel -200x150 x6x9 A'	

の圧縮強度, _sA: 鉄骨断面積, _{σy}: 鉄骨の降伏強度, _sp_c: 圧縮側鉄筋比である。

表2にコンクリートの材料特性を,表3に鋼材の材料特 性を示す。本試験体では,基礎に相当するスタブには普 通コンクリートを,敷モルタルには無収縮グラウトを, 柱には繊維補強コンクリートを使用した。柱に使用した 繊維は,標準長30mm,直径0.66mmのビニロンファイバ ー(以下 RF4000)であり,体積混入率 V₁は1.0%である。

2.2載荷計画

図2に載荷装置を示す。試験体は PC 鋼棒により下スタ

		圧縮強度	ヤング係数	圧縮強度時	
		(N/mm ²)	(N/mm ²)	ひずみ (μ)	
E0	柱	46.6	31,160	2,850	
	モルタル	67.2	-	-	
	スタブ	34.4	28,650	2,140	
E1	柱	46.5	29,570	2,940	
	モルタル	71.0	-	-	
	スタブ	34.8	29,430	2,190	
E2	柱	45.9	31,450	2,900	
	モルタル	70.7	-	-	
	スタブ	39.7	30,840	2,030	

表2 コンクリートの材料特性

ブを載荷フレームに固定した。実験では,試験体頂部に 設置した鉛直ジャッキ(押:3,000kN)によって所定の軸 カNを作用させつつ,載荷フレームに取り付けた2台の水 平オイルジャッキ(押:各500kN)によって水平力を作用 させた。水平力載荷は,試験体頂部の水平変位 δ を柱脚か ら試験体頂部までの高さ h(815mm)で除した変形角 R(δ /h)により制御した。加力プログラムは 1/800rad およ び 1/1/400rad を 1 サイクル, 1/200, 1/100, 1/67, 1/50, 1/33, 1/25rad を 2 サイクルおよび 1/20rad の正載荷である。

3. 実験結果

3.1破壊性状および履歴特性

図3に各試験体の実験終了後の損傷状況を,図4に各試 験体のせん断カー変形角関係を示す。図4には,鉄骨フラ ンジの降伏点を○印,ABの降伏点を△印,最大耐力点を □印で示し,第4章で示す柱の終局曲げ耐力を実線で,柱 脚の終局曲げ耐力を破線でそれぞれ示している。

試験体 E0 では、1/200rad の載荷サイクルにおいて AB の 引張降伏および BP と敷モルタル間のすべりが確認され、

それに伴いスリップ型の履歴性状を示す傾向が認められた。最終的に柱にひび割れの発生はほぼ認められず、柱脚のすべりに伴う敷モルタルの剥離および BP 引張側の浮き上がりが顕著であった。

LOAD

5

A

Hydraulic jack

3,000kN

South

+

Hydraulic jacks

North

500kN

試験体 E1 では、1/100rad の載荷サイクルにおいて鉄骨 フランジの引張降伏、1/67rad の載荷サイクルにおいて AB の引張降伏が確認された。その後、除荷および再載荷の 際に急激な剛性変化が認められた。最終的に柱下部曲げ ひび割れの拡幅および BP 引張側の浮き上がりが顕著であ った。

試験体 E2 では、1/100rad の載荷サイクルにおいて鉄骨 フランジの引張および圧縮降伏に伴い紡錘型の履歴性状 を示す傾向が認められた。最終的に柱下部コンクリート の圧壊が顕著であった。

最終破壊性状をみると、軸力比の増大に伴い柱脚にお ける損傷の減少および柱における損傷の増加が認められ た。また、軸力比の増大に伴い、各試験体の最大耐力は 上昇し、履歴性状はスリップ型から紡錘型に移行する傾 向が伺えた。

3.2変形成分

図5に各試験体における変形成分の履歴性状を示す。こ こで、変形成分は、柱脚の回転変形、すべり変形および 柱変形に区別している。同図には、鉄骨フランジの降伏 点を○印、ABの降伏点を△印でそれぞれ示している。各 変形成分は図6に示す変位計取り付け状況から算出した。

変形成分の履歴性状をみると,軸力比の増大に伴い柱 脚の回転変形,すべり変形の減少および柱変形の増加が 認められた。

試験体 E0 では、柱脚の回転変形およびすべり変形にス

リップ型の履歴性状の発現が認められた。また、柱変形 の顕著な増加は認められない。試験体 E1 では、柱脚の回 転変形にフラッグ型の履歴性状および柱変形に紡錘型の 履歴性状の発現が認められた。これらが図4に示した急激 な剛性変化の一因と判断される。また、すべり変形の進 展は確認されなかった。試験体 E2 では、柱変形に紡錘型 の履歴性状が確認され、その他の回転変形およびすべり 変形の進展は認められない。

以上の破壊性状, せん断力-変形角関係および変形成 分の結果より, 試験体 E0 の破壊モードは柱脚の曲げ降伏

卒業論文概要

図6 変位計取り付け状況

およびせん断降伏の混合型と判断される。試験体 E1 の破壊モードは柱脚および柱の曲げ降伏の混合型と判断される。試験体 E2 の破壊モードは柱曲げ降伏型と判断される。

4. 終局耐力計算

CES 柱および露出柱脚の曲げ終局耐力は一般化累加強 度理論を用いて算出した¹⁾。柱脚のコンクリート強度には 表 2 の材料試験値に低減係数(=0.85)を乗じた値を用い た。鉄骨ウェブの曲げ耐力は精算値である。また,柱脚 における AB は引張力のみを負担するものとして計算した。 曲げモーメントのせん断力への換算式は式(3)である。

$$Q = M/h \tag{3}$$

露出柱脚のせん断終局耐力は文献 2)に示される式(4)~(6) を用いた。

$$Q_{fu} = 0.5 \left(N + {}_{b} T_{Y} \right) \tag{5}$$

$$Q_{bu} = n_t \,_b a \, F_{bu} / \sqrt{3}$$

ここで、 $_bT_Y$: 引張側 AB の降伏張力、 n_t : 引張側 AB の 本数、 $_ba$: AB の軸断面積、 F_{bu} : AB の引張強度である。

表4に終局耐力の計算値と実験によって得られた最大耐力の一覧を,図7に終局耐力計算の*N-Q*相関関係を示す。

試験体 E0 では、柱脚曲げ耐力値が最も低い。実験の最 大耐力および柱脚曲げ耐力計算値の比率は 0.99 であり、 実験値が計算値を下回った。これは、実験において敷モ ルタルの剥離により柱脚コンクリートからの圧縮反力が 減少したためと推察される。また、柱脚曲げ耐力、柱脚 せん断耐力および柱曲げ耐力の計算値はすべて同程度で ある。実験においても柱脚と柱の曲げ降伏が確認されて いる。このことから、本論に示す耐力計算に基づく破壊 モードは実験のものと対応していると判断された。試験 体 E1 および試験体 E2 では、柱曲げ耐力の計算値が最も低 い。破壊モードは実験結果と同様に柱曲げ降伏先行型と

表4 計算結果および実験結果

単位(kN)	E0	E1	E2
実験値	191	314	358
(a)柱曲げ耐力	202	270	330
(b) 柱脚曲げ耐力	192	345	495
(c)柱脚せん断耐力	199	332	545
実験値/min{(a), (b), (c)}	0.99	1.16	1.08

判断された。実験の最大耐力の値と柱曲げ耐力の計算値 の比率は,試験体 E1 が 1.16,試験体 E2 が 1.08 であり, 一般化累加強度理論によって精度良く評価可能である。

5. まとめ

(6)

本研究では, CES 露出柱脚の静的載荷実験を実施し, 当該部材の構造性能を検討した。本論より得られた知見 を以下に示す。

- 本論に示す CES 露出柱脚では、軸力比の増大に伴い 柱脚部の損傷の減少および柱部の損傷が増加し、ス リップ型から紡錘型の履歴性状に移向する傾向が認 められた。
- 2) 軸力比 0.1 の試験体では、柱脚にフラッグ型および柱 に紡錘型の履歴性状の発現が認められた。
- 3) 本論に示す CES 露出柱脚の終局耐力は一般化累加強 度理論および鋼構造接合部設計指針に示される露出 柱脚の終局耐力計算値によって評価可能である。

参考文献

- 日本建築学会:鉄骨鉄筋コンクリート構造計算規 準・同解説,2014.1
- 2) 日本建築学会:鋼構造接合部設計指針, 2015.6

*1 高知工科大学 システム工学群 建築・都市デザイン専攻 Kochi University of Technology School of System Engineering Architecture and infrastructure Systems