卒業論文要旨

圧縮機動翼列の翼端漏れ流れ制御による失速特性改善

Improvement of Compressor Stall Characteristics by Controlling Blade Tip Leakage Flow

システム工学群

航空エンジン超音速流研究室 1220126 沼野 翔泰

1. 緒言

航空機用のジェットエンジンは燃料消費率の改善が求め られており⁽¹⁾,同時に安全性の確保は必須である.ジェット エンジンの圧力比を上げることは燃料消費率の改善につな がる方法の1つである.圧力比を上げる方法として「圧縮機 の段数を増やす方法」と「圧縮機の回転数を大きくする方法」 がある.「圧縮機の段数を増やす方法」は部品点数が増加す ることから燃料消費率の悪化につながるため,燃料消費率の 改善には「圧縮機の回転数を大きくする方法」が有効である. しかし,圧縮機の回転数を大きくすると,圧縮機の動翼で失 速が発生しやすくなりエンジンの故障や事故に繋がる.圧縮 機の失速特性は航空機の安全性に大きく関わることから,良 好な失速特性が求められる.

圧縮機の失速特性を改善する手法の1つとして動翼を覆 うケーシングに溝加工を施し、翼端を翼正圧面側から負圧面 側に向けて流れる翼端漏れ流れを制御することで失速特性 を改善する「ケーシングトリートメント」という手法がある が、圧力比や圧縮機効率を低下させてしまうという問題点が ある.

そこで本研究では, 翼端漏れ流れを制御することで圧力比 や圧縮機効率の低下を最小限に抑えた圧縮機翼列の新たな 失速特性改善手法を提案することを目的とした.

2. 研究手法

本研究は様々な溝加工形状を評価するためにコンピュー タを使用した数値計算により行った.また,実際のジェッ トエンジンには翼を環状に並べた「環状翼列」が用いられ るが,翼端漏れ流れの影響のみに着目するために環直径が 翼スパンと比べて十分大きいと仮定した「直線翼列」を用 いて研究を行った.

まず始めに,提案する新たな失速特性改善手法が翼面上 の流れに及ぼす影響を調査し,その結果をもとに,失速特 性を改善する翼端溝加工形状を模索した.

3. 数値計算法

3.1 計算ソフトと支配方程式

計算ソフトは JAXA が開発中の三次元圧縮性流れソルバーである UPACS を使用した⁽²⁾.支配方程式は3次元圧縮性ナビエ・ストークス方程式を用いた.

3.2 計算対象·条件

計算対象は直線翼列の一流路をモデル化したものを用いた. 翼型は NACA65-810 翼型を使用し, 翼弦長 80[mm], 翼 スパン 180[mm]の短形翼とした.計算モデルの上面と下面に

周期境界条件を設定することで直線翼列の流れを再現し, 食 違い角 26.3[deg], ピッチ 80[mm], 主流流速 40[m/s]の条件を 与えて計算した. 翼面と壁面は滑りなし壁条件とし, 翼端側 の壁面については実際のジェットエンジンにおけるケーシ ングと動翼の相対的な運動を再現するために壁面運動条件 とした. また, 翼端と翼端側の壁面との翼端隙間は 3.5[mm] とした. 翼端側から見た格子の概要を図 1, 翼腹面側から見 た格子の概要を図 2 に示す.

Fig. 1 Overview of computational grid (from tip side)

Fig. 2 Overview of computational grid (from wing belly side)

4. 新たな失速特性改善手法の提案

4.1 通常の翼の失速特性

まず始めに,通常の翼モデルを用いて失速点と翼面圧力分 布を調査した.通常の翼モデルを Model 0 と呼称することに する.図3に Model 0 の流入角に対する揚力係数の変化,図 4 に翼端から 90mm (50%span)における流入角に対する翼面 圧力係数の変化を示す.図3より,Model 0 においては連続 して揚力係数が低下し始める点である失速点が流入角 61 度 であることがわかる.図4より,動翼への流入角が大きくな ると,翼負圧面側の前縁から8[mm](10%chord)程度離れた 場所に低圧の領域が生成されることがわかる.この領域を可 視化したものを図5に示す.図5より,低圧の領域では速度 ベクトルが逆流し,剥離していることがわかる.このことを 踏まえて再度図4に着目すると,剥離領域は流入角が大きく なるにつれて成長しながら後縁側へ移動し,やがて翼面全体 に広がって失速することがわかる.このことから,剥離領域 の成長を遅らせることが失速特性改善に繋がると考えられ る.

Fig. 3 Lift coefficient with respect to inlet angle for Model 0

Fig. 4 Pressure coefficient at 50%span position from tip in blade surface with respect to inlet angle for Model 0

Fig. 5 Pressure distribution and velocity vector around the blade (Model 0, inlet angle=57[deg], 50%span position from tip)

4.2 新たな失速特性改善手法

新たに提案する失速特性改善手法として、剥離領域に対し てよりピンポイントで翼端漏れ流れを導き、失速特性改善に 繋げることを期待して動翼の前縁側翼端に溝加工(Tip treatment)を施した.溝は幅 2[mm] (2.5%chord),深さ 4[mm] (5%chord)とし,翼端漏れ流れが主流によって後縁側に流 されることを防ぐために翼弦に垂直方向に加工した.溝の中 心位置を変えた 6 パターンのモデルで計算を行い,翼面近傍 の流れがどのように変化するかを調査するために翼端溝加 工がないモデル (Model 0)の計算結果と比較した.表1に溝 加工の中心位置,図6に提案する新たな失速特性改善手法の 例をそれぞれ示す.

Table 1 Position of tip treatment	
Model	Distance from leading edge to center line of tip treatment [Percent chord]
1	1.25
2	2.5
3	5
4	10
5	15
6	20

Fig. 6 Example of tip treatment (Model 2)

それぞれのモデルの狙いとして, Model1は翼端前縁から 発生する翼端漏れ渦を強め, 剥離領域の成長を抑えること を狙った. Model2から Model4は, 剥離領域に直接翼端漏 れ流れを導くことで剥離領域の成長を抑えることを狙っ た. Model5と Model6は翼全体に広がって崩壊する直前の 剥離領域に翼端漏れ流れを導くことで剥離領域の崩壊を抑 えることを狙った.

4.3 翼端溝加工の位置による翼負圧面上の流れの変化

図7に Model 1, Model 2の流入角 55 度における翼負圧面 から 3.5×10⁻⁴[m]離れた位置の流速ベクトル,同様に図 8 に Model 3, Model 4 について,図9に失速点付近である流入角 60 度における Model 5, Model 6 について示す.いずれも比 較のため Model 0 も同時に示してある.黒丸で囲った溝加工 付近の流れを見ると,図7より,Model 1 では Model 0 より も流速ベクトルが逆流しているのがわかる.図7と図8よ り,Model 2 と Model 3 では Model 0 と比べてわずかではあ るが翼スパン方向に流れを導くことができ,流れの逆流を抑 えることがわかる.図8と図9より,Model 4, Model 5, Model 6 では Model 0 と流れの違いがほとんど見られないことがわ かる.以上のことから,翼端溝加工を翼前縁に近づけるほど 翼端漏れ流れを用いて流れの逆流を抑えることができると 考えられる.

次に、図 10 と図 11 に流入角 55 度における Model 0, Model 2, Model 3 の翼端から 18[mm] (10%span)離れた位置と翼端

から 90[mm] (50%span)離れた翼中央スパンにおける翼面圧 力係数分布をそれぞれ示す.2 つの図中の 10%chord 付近に ある圧力係数が大きい領域が剥離領域である.図 10 より, 翼端付近では剥離領域の成長が抑えられていることがわか る.しかし,図 11 より翼中央スパンでは変化が見られない ことがわかる.以上のことから,この溝加工形状では翼全体 の失速特性改善には繋がらないと考えられる.

Fig. 7 Flow on the wing for Model 1 and Model 2 compared with Model 0 (inlet angle=55[deg])

Fig. 8 Flow on the wing for Model 3 and Model 4 compared with Model 0 (inlet angle=55[deg])

Fig. 9 Flow on the wing for Model 5 and Model 6 compared with Model 0 (inlet angle=60[deg])

Fig. 10 Pressure coefficient on the wing at 10% span position from tip at inlet angle of 55 deg. for Model 0, Model 2 and Model

Fig. 11 Pressure coefficient on the wing at 50% span position from tip at inlet angle of 55 deg. for Model 0, Model 2 and Model 3

5. 新たな翼端溝加工形状の提案

5.1 新たな翼端溝加工形状

図 12 に提案する新たな翼端溝加工形状を示す. 施した溝 加工は幅,深さ共に 4[mm] (5%chord) とし,第4項で扱っ た溝加工形状と比べて深さは変えず,幅を2倍にした.また, 溝の傾きについては圧力上昇が著しい前縁部からより多く の翼端漏れ流れを導くことを期待して翼列ピッチに対して 平行に加工した.溝の正圧面側の中心位置は前縁から 2.5[mm] (3.125%chord) とした. これを Model 7 と呼称する ことにする.

Fig. 12 New model with tip treatment (Model 7)

5.2 新たな翼端溝加工形状による失速特性への影響

図 13 に Model 0 と Model 7 のそれぞれについて流入角に 対する揚力係数の変化を示す.連続して揚力係数が低下し始 める点である失速点が, Model 0 の失速点が 61 度であるのに 対し, Model 7 の失速点は 62 度であり,失速点が大きくなっ たことがわかる.また, Model 7 は Model 0 と比べて, 揚力 係数の値が全体的に小さいことがわかる. 図 14 と図 15 に流入角 55 度における翼端から 18[mm] (10%span)離れた位置と翼端から 90[mm](50%span)離れ た翼中央位置における翼面圧力係数分布をそれぞれ示す.翼端付近と翼中央スパンのどちらにおいても剥離領域が小さ くなっており、剥離の進行を抑えていることがわかる.以上 のことから、翼端溝加工を通った翼端漏れ流れが、翼端だけ でなく翼中央スパンにおいても剥離の進行を抑制し、失速特 性改善に繋がったと考えられる.

Fig. 13 Lift coefficient with respect to inlet angle for Model 0 and Model 7

Fig. 14 Pressure coefficient on the wing at 10% span position from tip at inlet angle of 55 deg. for Model 0 and Model 7

Fig. 15 Pressure coefficient on the wing at 50% span position from tip at inlet angle of 55 deg. for Model 0 and Model 7

6. 結言

本研究では直線翼列を対象とした数値計算によって新た に提案する失速特性改善手法が翼面付近の流れに及ぼす影 響を調査し、その結果をもとに失速特性を改善するモデル を模索した.

まず,新たに提案する失速特性改善手法が翼面付近の流 れに及ぼす影響を調査した.その結果,翼の前縁近くに溝 加工を施すことで翼端漏れ流れを翼端付近の剥離領域に導 くことがわかった.

次に、これまでの翼端溝加工モデルより積極的に翼端漏 れ流れを導くことを期待したモデルで失速特性を調査し た.その結果、翼端溝加工がないモデルに比べて翼にかか る負荷は減少するものの、剥離領域の成長を抑え、失速特 性改善につながることがわかった.

今後の課題として、数値計算で失速特性改善効果が確認 できた翼端溝加工モデルについて、風洞実験においても失 速特性改善効果があるか確認する必要がある.また、今回 失速特性改善効果が確認できた翼端溝加工モデルは、翼負 荷の減少も同時に確認できた. 圧縮機の動翼において翼負 荷の減少は圧力比の低下につながることから、失速特性を 改善し、且つ翼負荷の減少を最小限にする翼端溝加工形状 を模索する必要がある.加えて、今回は空力性能にのみ着 目しているため、強度の面も考えて溝加工形状を検討する 必要がある.

謝辞

JAXA で開発中の UPACS を使用させていただくにあたり, JAXA の山本一臣氏と賀澤順一氏には貴重なご助言を 頂いた.ここに感謝の意を表す.

文献

- (1) 旅客用エンジンの技術革新~経済性・環境適合性・安全 性の向上への取り組み~,(公財)航空機国際共同開発促 進基金(2015)
- (2) CFD 共通基盤プログラム UPACS の開発,山本一臣,他
 6名,第14回数値流体力学シンポジウム (2000)