圧縮機翼列の失速特性改善に向けた翼端溝加工の検討

Investigation of Blade Tip Treatment for Improvement of Stall Characteristics of Compressor Cascade

1. 緒言

航空機用ジェットエンジンの圧縮機には,燃料消費率向上 のため圧力比及び効率の向上と共に安全性の確保のため失 速余裕が必須となる. 圧縮機内では翼端を正圧面側から負圧 面側に流れる漏れ流れが存在し,失速特性や圧力比,効率に 影響を及ぼす. そこで翼端漏れ流れを制御し, 失速特性改善 を目的として翼列を覆うケーシングに溝加工を施すケーシ ング・トリートメント(1)が用いられているが、圧力比や効率 の低下が課題となっている. そのため本研究では軸流圧縮機 の圧力比及び効率の低下を最小限に抑え,既存のケーシン グ・トリートメントと同様な溝を翼端側に加工する (チップ・ トリートメント) ことによる失速特性改善手法の提案を最終 目的とする.実験に使用する翼として先行研究(2)の数値計算 結果において失速特性改善に有効とされる溝形状を直線翼 列風洞の翼に適用し, 翼端とケーシングの相対運動を模擬す るために可動壁を用いた翼列風洞実験において翼端隙間内 の流速計測を行い、溝加工の有無による漏れ流れの変化を比 較し翼端溝加工の効果を評価する.

2. 風洞実験の装置と方法

2.1 実験装置

2.1.1 風洞

本研究には高知工科大学の航空エンジン超音速流研究室 が所持している直線翼列風洞を用いた.風洞の外観を図1に 示す.流速は無段階に調整が可能で最大流速は 40[m/s]であ る.本研究では主流速度を40[m/s]とした.

Fig. 1 Linear cascade wind tunnel.

2.1.2 直線翼列

実際の圧縮機の翼列は環状に配置されるが、本研究では純粋な翼列の影響を計測する目的で、風洞計測部に直線翼列を 設置し実験を行った.直線翼列は翼ピッチを 80[mm]とし、 翼型を7枚平行に並べたものを使用した.図2は直線翼列風 洞の計測部であり、計測は中央に位置する翼で行った.この システム工学群 航空エンジン超音速流研究室 1220163 森下 勇希

風洞は翼列に対する流入角を任意に変更することが可能で ある.また翼取付板を変更することで数種類の食違い角を選 択できる.本研究では食違い角を 26.3 度,流入角を 45 度に 統一した.

Fig. 2 Wind tunnel test section.

2.1.3 可動壁

図3に可動壁の外観を示す.図3の赤枠内の緑色のベルト 部分が翼端壁面に相当する部分であり、下向きに可動させる ことにより動翼の相対運動を模擬しており、流入角に応じて ベルト角度を任意に設定できる.今回は壁面のベルト速度を 速度三角形から導出した値である 28[m/s]として計測した⁽³⁾.

Fig. 3 Moving wall.

2.1.4 翼型

実験に使用した翼型は NACA65-810 であり, 翼弦長は 80[mm]である. 翼端溝加工なし翼モデルを図4, 翼端溝加工 あり翼モデルを図5に示す. 図5の赤丸内に確認できるのが 翼端溝加工である. 溝加工の詳細な寸法として, 溝中心は翼 前縁から 2[mm](2.5%chord), 溝の深さは翼端面から 4[mm](5%chord), 溝幅は 2[mm](2.5%chord)である. 翼前縁側 を拡大した溝加工のイメージを図 6 に示す. 図 6 の青色の部 分が翼端溝加工である. これらの 2 種類の翼モデルを実験対 象として計測し比較を行う.

Fig. 4 Normal blade.

Fig. 5 Blade tip treatment.

Fig. 6 Detail of blade tip treatment.

2.2 実験方法

翼端隙間内の流速計測には非接触で流れ計測が可能なレ ーザードップラー流速計(日本カノマックス社製 Smart LDV Ⅱ,以下 LDV とする)を用いた.図7に LDV の外観を示 す.実験機器の位置関係上 LDV から照射されるレーザー光 が翼端壁や翼列に遮られることを防ぐため,図8の左側に示 すように LDV プローブを約2.8 度傾けて計測を行った.図9 の赤枠の領域が計測範囲である.なお計測結果の速度は翼か ら壁面に向かう方向を正方向,壁面から翼に向かう方向を負 の方向と定義した.

Fig. 7 Laser Doppler Velocimeter.

Fig. 8 Measurement of Laser Doppler Velocimeter.

Fig. 9 Measurement area of tip leakage flow.

3. 流れ計測の結果と考察

LDV で計測した溝加工がない翼モデルの結果を図 10,溝 加工がある翼モデルの結果を図 11 に示す.溝加工の有無の いずれの場合についても、大まかな分布として翼背面側で は翼方向に向かう青色の負の速度,翼腹面側では壁面方向 に向かう赤色の正の速度があり、流れの方向が翼弦線付近 で変化していることが確認できる.これは翼腹面側と翼背 面側で圧力差が生じることで腹面側から翼端隙間内を通過 して背面側に向かう翼端漏れ流れであると考察する.

上流の背面側である X=10mm 付近では溝加工なし翼モデ ルよりも溝加工あり翼モデルの方が翼方向の流れである青 い分布の色合いが強まっていることがわかる. 上流の腹面 側にある壁面方向に向かう赤色の分布を観察すると、溝加 工なし翼モデルでは X=0.0mm において Z=12.0~17.5mm に 分布しているが、溝加工あり翼モデルでは Z=12.0~20.0mm 付近まで分布しており、溝加工ありの方が広範囲に分布し ていることがわかる. さらに溝加工なし翼モデルでは分布 が X=0.0~30.0mm にかけて徐々に流速が増加し後縁付近で 最大値になるのに対し、溝加工あり翼モデルでは X=0.0mm の時点で流速が 5.0[m/s]に近い値となっており、上流から赤 い分布の色合いが強まっていることがわかる。前述した流 れが翼端漏れ流れであると仮定した場合,上流の背面側に ある部分的に強まった負の分布は翼端溝加工を有すること で発生した翼方向へ向かう強い流れであり、上流の腹面側 にある正の分布は翼端溝加工によって強まった翼端隙間内 に向かう流れであると考える.以上のことから,翼列風洞 実験においては翼端溝加工を有することによって上流側の 流れに影響を与え、翼端漏れ流れをより腹面側から背面側 に流れ込ませていると推測する.

翼後縁付近の背面側に正と負の速度が隣接する部分が生 じた.これは主流の上流側に視点を置いたとき,翼端面を軸 として反時計回りに渦を巻く翼端漏れ渦であると考察する. さらに溝加工なし翼モデルよりも溝加工あり翼モデルの方 が比較的正の速度が強まっていることがわかる.これは溝加 工によって上流の翼端漏れ流れが強まったことで下流側の 流れに変化が生じたと考える.

4. 数値計算との比較

ここでは 3. の実験結果から得られた現象を解明する目的 で、風洞実験と同様の条件で行われた数値計算結果⁽²⁾を用い て風洞実験結果と比較し評価する.

4.1 数値計算の結果

数値計算の妥当性確認のために風洞実験結果との比較を 行った.数値計算結果の翼端溝加工なし翼モデルの結果を図 12,翼端溝加工あり翼モデルの結果を図 13 に示す.溝加工 の有無のいずれの場合についても,翼背面側では翼方向に向 かう負の速度,翼腹面側では壁面方向に向かう正の速度が確 認できた.腹面側の正の分布は溝ありと溝なしで差異は見ら れなかった.しかし,翼前縁付近の負の速度は,翼端溝加工 なし翼モデルの方では翼弦線の中心である X=25.0mm 以降 から分布が強まっているのに対し,翼端溝加工あり翼モデル では比較的翼前縁側から分布が強まっていることがわかり, 実験結果と同様の傾向にあることが確認できた.これより, 数値計算は風洞実験をある程度模擬できていると判断し,風 洞実験の結果を補完する目的で数値計算結果を用いた.

4.2 数値計算の利用

図 10, 図 11 の実験結果では, 翼端漏れ流れと翼端漏れ渦を推測した. そこで翼端溝加工内部に相当する前縁から 2.5%chord 付近と 40%chord の断面をそれぞれ観察すること で溝加工の効果について確認を行う.

4.2.1 翼端漏れ流れの観察

4.2.1.1 翼端溝加工内部の流れ

前縁から2.5% chord 付近において主流方向に垂直な面を取 り、下流側から上流側に向けて視点を置いた図に流速分布を ベクトル図とし、ベクトルの矢印にコンターを描画したもの を図 14 に示す. 図の中心に位置する白色領域は翼断面であ り、この領域の右端が翼端,上面が翼腹面,下面が翼背面に 相当し、白色領域の右側に位置する部分が翼端隙間である. また青枠部分が翼端溝加工の内部である.

溝加工の有無のいずれの場合も翼腹面の翼端で翼端隙間 に流れ込む流れ,翼端隙間内で図中下向きの流れ,翼背面側 で僅かではあるが翼根方向に向かう流れが確認できること から,これらは翼端漏れ流れであると考える.

溝加工あり翼モデルは翼端隙間内だけでなく,溝加工内部 にも図中下向きの流れが確認できる.また翼背面側では溝加 工なしに比べて赤いベクトルが翼表面から離れた部分にも 分布している.しかし,翼根方向に向かう流れ等は特に確認 できず,この領域においては溝加工が失速特性に効果的であ るかどうかは推測できなかった.

Fig. 14 CFD result near 2.5% chord cross section.⁽²⁾

4.2.1.2 前縁から 40% chord 位置の流れ

次に風洞実験と数値計算で同様の傾向が得られた部分の 断面を観察した.前縁から 40%chord 位置の流速分布を示し たものが図 15 であり,図の見方や描画方法は図 14 と同様で ある.溝加工ありなしどちらの場合も翼腹面では翼端隙間に 流れ込む流れ,翼端隙間内では図中下向きの流れが確認でき る.翼背面では溝加工なしに比べ,溝加工ありの方が赤いベ クトルが広範囲に分布していることが確認できる.また翼端 近傍では翼根方向に向かう流れが溝加工なしに比べて比較 的多く確認できることから,翼端漏れ流れを溝加工によって 翼根方向に導けていると考える.

Fig.15 CFD result on 40% chord cross section.⁽²⁾

4.2.2 翼端漏れ渦の観察

図 16, 17 は X 軸周りの渦度分布である.座標原点に視 点を置いたとき,X 軸中心に反時計回りの渦を正として表 す.図は翼端隙間内で翼端から 2.5[mm]離れた断面を可視化 したものである.翼端溝加工の有無のいずれの場合も,翼 背面付近と翼端隙間内の腹面側に正の分布,翼後縁の背面 付近に負の分布を確認した.翼腹面側の正の分布は溝加工 の有無で大きな差異は確認できなかったが,溝加工なしに 比べて溝加工ありでは赤い分布が主流方向に短くなったこ とが確認できた.翼後縁付近の負の分布は実験結果から翼 端漏れ渦を推測した場所と一致し,渦の方向も実験結果か ら考察した方向と一致していることから風洞実験で考察し た流速分布は翼端漏れ渦であると考える.しかし,溝加工 ありに比べて溝加工なしの方が比較的負の分布が強く,広 く分布していることは図 10, 11の風洞実験の結果と一致し なかった.

5. 結言

本研究では直線翼列の翼端隙間内の流れ計測を行い,溝 加工の有無による流速分布の変化を比較した.その結果, 溝加工の有無によって上流の背面側で負の分布に局所的な 違いが見られ,腹面側でも正の分布が強まることが確認で きた.このことから風洞実験においては翼端溝加工を施す ことで,翼端漏れ流れをより腹面から背面側に導けている と推測した.

次に風洞実験で得られた結果を補完する目的で,実験と 同条件の数値計算の結果を用いた.はじめは数値計算結果 の妥当性確認のために風洞実験結果と数値計算結果の比較 を行うことで、溝加工の有無のいずれの場合も同様の傾向 であることを確認した.そこで数値計算が実験をある程度 模擬できているとし,翼端隙間内の速度ベクトルを観察し た.その結果,溝加工内部とその下流で翼端漏れ流れを確 認した.さらに前縁から40%chord位置では,溝加工によっ て僅かではあるが翼背面側で翼根方向に向かう流れを増加 させていると推測した.しかし,今回風洞実験と数値計算 で比較したのは溝加工部以外の部分であるため,風洞実験 結果の差異の原因が溝加工であるとは断定できず,推測す るまでに留まった.最後にX軸周りの渦度分布を観察する ことで翼端漏れ渦を確認したが,風洞実験と数値計算とで 一部結果が一致していないことがわかり,改善の余地があ ると考えた.

今後は重要な課題である前縁側の翼端漏れ流れ計測環境 の構築や翼面圧力の計測を行うことにより,数値計算結果 との比較を通してより信頼性の高い失速特性改善手法の提 案に繋げることが必要である.

Fig .16 Vorticity in X direction with normal blade.⁽²⁾

Fig. 17 Vorticity in X direction with blade tip treatment.⁽²⁾

文献

- (1) 山口信行、"ケーシング・トリートメント"、ターボ機械、
 第12巻、第9号、1984、pp.558-567.
- (2) 佐藤拓, "翼端漏れ流れ制御による圧縮機翼列失速特性 改善." 高知工科大学卒業論文, 2020
- (3) 岡優介, "可動壁を用いた翼列風洞実験," 高知工科大学 卒業論文, 2020