マルチエージェントシステムの考え方を用いた混雑空港到着機の制御

Control of Arrival Aircraft at Congested Airport based on Multi-Agent System Concept

1. 緒言

航空交通の需要は新型コロナウイルス感染症の終息後も, 引き続き増加の一途を辿ると予測されており,航空機の遅延 や混雑が懸念される.そのため,我が国の空港および管制の 処理能力向上,空港の容量拡大が必要不可欠である.遅延や 混雑を解決するには,空港が十分な発着容量を提供できるこ と,航空交通量の増大を確実に処理できる航空管制の能力が 備わっていることが必要である.⁽¹⁾

しかし,現在の航空管制においては管制官と航空機の1対 1の音声交信による通信が主であり,交通量の増加により管 制指示を出す管制官の負担増加や空港周辺での混雑が予想 される.これらの問題を解決するために本研究ではマルチエ ージェントシステムの考え方を用いた新たな到着管理の方 法を提案する.機体相互の通信には自動従属監視 ADS-B(Automatic Dependent Surveillance Broadcast)が利用可能と考 える.本研究により運航効率の向上,遅延の抑制や管制官の 負担低減が期待される.

2.フォーメーション制御

フォーメーション制御の主な目的は複数のエージェント に共通の目標を達成させることである.例えば,事前に指定 された幾何学的形状にエージェントを編成し,相互情報を使 用することで互いの位置と速度を更新することである.

2.1 フォーメーションモデル

本論文では、N個のエージェントが存在しているとして、2次元平面(n = 2)での制御について考える.

$$\dot{x}_i(t) = A_{veh} x_i(t) + B_{veh} u_i(t)$$
(1)

$$i = 1, \cdots, N$$
 and $x_i(t) \in \mathbb{R}^2$

$$A_{veh} = I_n \otimes \begin{bmatrix} 0 & 1\\ a_{21} & a_{22} \end{bmatrix}$$

$$\tag{2}$$

$$B_{veh} = I_n \bigotimes \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$x_{i} = \begin{bmatrix} x_{p} \\ x_{v} \end{bmatrix}, x_{p} = \begin{bmatrix} (x_{p})_{1} \\ \vdots \\ (x_{p})_{n} \end{bmatrix}, x_{v} = \begin{bmatrix} (x_{v})_{1} \\ \vdots \\ (x_{v})_{n} \end{bmatrix}$$
(3)

$$\dot{x}_i = \begin{bmatrix} x_v \\ x_a \end{bmatrix} \tag{4}$$

式(2),(3),(4)を式(1)に代入することで、1 次元の状態方程式は 式(5)のようになる.なお、式(2)、式(3)は n 次元として扱う ため次元を増やすために I_n のクロネッカー積をかけている. システム工学群 機械・航空システム制御研究室 1241001 池内 飛翔

$$\frac{d}{dt} \begin{bmatrix} x_p \\ x_v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_p \\ x_v \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_i \tag{5}$$

式(5)を展開すると以下の式(6),(7)になる.

$$\dot{x}_p = x_v \tag{6}$$

$$\dot{x}_v = a_{21}x_p + a_{22}x_v + u_i \tag{7}$$

2.2 フォーメーションベクトル

本稿ではエージェントを指示されたフォーメーションに 整列,移動させるためのフィードバック制御則を設計する. フォーメーションベクトルをhとして式(8)のように定義す る. hpはリーダーとなるエージェント,もしくは任意の点を 原点(0,0)とした座標軸に対する各エージェントの座標であ る.

$$h = h_p \bigotimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^{2N} \tag{8}$$

Nはエージェントの数である.以下の図1のようなフォーメ ーションベクトルhで任意の形状に形成した後,その形状を 維持した状態で移動した先を x_p とし,移動ベクトルをqとす る.

$$\left(x_p\right)_i = \left(h_p\right)_i + q, i = 1, \cdots, N \tag{9}$$

ここで添え字pは位置である.

また,一度フォーメーションを形成した後,形成を保ったま ま移動する必要がある.式(10)は隣接するエージェントi,jと の移動前 (h_i,h_j) と移動後 (x_i,x_j) の相対距離の偏差を表して おり,隣接するエージェントとの相対的な変位の平均から計 算される.

$$z_{i} = (x_{i} - h_{i}) - \frac{1}{|J_{i}|} \sum_{j \in J_{i}} (x_{j} - h_{j}), i = 1, \cdots, N$$
(10)

Fig1 Agent formation⁽³⁾

 L_G をグラフラプラシアン行列とすると、状態方程式(11)と入力(12)は以下のように得られる.

 $\dot{x}(t) = Ax(t) + Bu(t) \tag{11}$

$$u(t) = L(x(t) - h)$$
 (12)

$$A = I_N \otimes A_{veh} , B = I_N \otimes B_{veh} , L = L_G \otimes I_{2n}$$
(13)

 A_{veh}, B_{veh} は式(2)に示したとおりである.なお,式(13)は式(2) に示す行列をエージェントの数Nだけ増やすために I_N のク ロネッカー積をかけている.ここからはフォーメーションを 形成するためのフィードバック行列Fを見つける.フィード バック行列を含んだ状態方程式を式(14)に示す.

$$\dot{x}(t) = Ax(t) + BFL(x(t) - h) \tag{14}$$

A, Bを代入し、 $F = I_N \otimes F_{veh}$ として式(14)に代入すると式(15) のようになる.

$$\dot{x}(t) = I_N \otimes A_{veh} x(t) + L_G \otimes B_{veh} F_{veh}(x(t) - h)$$
(15)

グラフラプラシアンの固有値を導入する必要があるため、ここで正則行列Uを定義する. 正方行列 L_G に対して適当な正則行列Uを用いることで対角行列 $\tilde{L}_G = U^{-1}L_GU$ となる. また、 L_G の固有値が \tilde{L}_G の対角要素になる. ここで行列A, BおよびFを使用すると、以下の式(16)が得られる.

$$(U^{-1} \otimes I_{2n})(A + BFL)(U \otimes I_{2n})$$
(16)

$$= I_N \otimes A_{veh} + \tilde{L}_G \otimes B_{veh} F_{veh}$$

式(16)の右辺は、 $A_{veh} + \lambda B_{veh} F_{veh}$ の形式であり、 λ はラプラ シアン行列 L_G の固有値である、 $\lambda \dot{m} L_G$ の固有値である場合、 A + BFLの固有値は $A_{veh} + \lambda B_{veh} F_{veh}$ の固有値と同じである.

2.3 フォーメーションの安定化

事前に指定されたフォーメーションを形成するには式(15) が安定していることを確認する必要がある. フォーメーシ ョンhに対して,フィードバック行列 $F = I_N \otimes F_{veh}$ を使用し た式(15)の解がフォーメーションhに収束する場合 $L(x - h) \rightarrow 0, a_{21} = 0$ となる. フィードバック行列Fを得るために は $\lim L(x(t) - h) \rightarrow 0(t \rightarrow \infty)$ であることを証明する必要が ある.

$$L = L_G \otimes I_{2n} = L_G \otimes I_n \otimes I_2 \tag{17}$$

各エージェントの位置(添え字p)と速度(添え字v)は以下の 式(18)によって表される.

$$x = x_p \otimes \begin{pmatrix} 1\\0 \end{pmatrix} + x_v \otimes \begin{pmatrix} 0\\1 \end{pmatrix}$$
(18)

式(18)の両辺からhを引き、両辺に $L = L_G \otimes I_{2n} = L_G \otimes I_n \otimes I_2 e$ かけることで式(19)が得られる.

$$L(x-h) = L_G \otimes I_n \otimes I_2((x_p - h_p) \otimes \begin{pmatrix} 1\\ 0 \end{pmatrix})$$
(19)

$+ L_G \otimes I_n \otimes I_2((x_v) \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix})$

 $\lim L(x(t) - h) \rightarrow 0(t \rightarrow \infty)$ であることを証明するために以下の条件が0に近づく必要がある.

$$(L_G \otimes I_n) (x_p - h_p) \to 0 \tag{20}$$

$$(L_G \otimes I_n) x_v \to 0 \tag{21}$$

式(19)を微分し、 $\dot{x}_p = x_v$ より

$$L(\dot{x} - \dot{h}) = L_G \otimes I_n((x_v) \otimes \begin{pmatrix} 1\\0 \end{pmatrix})$$

$$+ L_G \otimes I_n((\dot{x}_v) \otimes \begin{pmatrix} 0\\1 \end{pmatrix})$$
(22)

式(19)を簡略化するために, $t \rightarrow \infty$, $x_v \rightarrow 0$ とすると式(22)の 第1項は0となるため式(23)が得られる.

$$L(\dot{x} - \dot{h}) = L_G \otimes I_n((\dot{x}_v) \otimes \begin{pmatrix} 0\\1 \end{pmatrix})$$
(23)
左辺は式(14)を使用して簡略化される.

左辺は式(14)を使用して間略化される。

$$L(\dot{x} - 0) = L(Ax - BFL(x - h))$$
$$= LAx + L(BFL(x - h))$$
(24)

$$LAx = (L_G \otimes I_{2n})(I_N \otimes A_{veh})(x_p \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_v \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix})$$

$$= (L_G \otimes I_n) x_p \otimes \begin{pmatrix} 0 \\ a_{21} \end{pmatrix} + (L_G \otimes I_n) x_v \otimes \begin{pmatrix} 1 \\ a_{22} \end{pmatrix}$$
(25)

よって、LAxの右辺第二項は式(21)によって0に近づくため、 ($L_G \otimes I_n$) $x_p \otimes (0 \quad a_{21})^T$ に収束する.また、式(22)により $x_p \rightarrow h_p$ となり、 $t \rightarrow \infty$ のとき

$$LAx = a_{21}(L_G \otimes I_n)(h_p \otimes \begin{pmatrix} 0\\1 \end{pmatrix})$$
(26)

と表せる. さらにL(BFL(x - h))も 0 に収束するため, lim $L(x(t) - h) \rightarrow 0(t \rightarrow \infty)$ となるには $LAx \ge L\dot{x}_v$ は 0 に収束 する. よって,

$$\lim_{t \to \infty} LAx = \lim_{t \to \infty} L\dot{x}_{\nu} = 0 \tag{27}$$

 $(L_G \otimes I_n)h_p \neq 0$ となるようなフォーメーション h_p を選択することにより、 $\lim_{n \to \infty} LAx = 0$ となるには $a_{21} = 0$ となる.

2.4 フィードパック行列の導出

式(14)のシステムを安定させるフィードバック行列につい て記載する.フィードバック行列は 2 次元を想定した $F = I_{nN} \otimes [f_1 \quad f_2]$ の形式を使用する.なお、 f_1, f_2 はフィードバッ クゲインである.安定性のラウス・フルビッツ安定判別法か ら、 $q(x) = x^2 + sx + p$ の形式の 2 次多項式を仮定する.sと pは次のような複素数として定義する.

$$s = s_1 + s_2 i$$
, $p = p_1 + p_2 i$ (28)

q(x)の共役複素数を以下のように示す.

$$r(x) = \overline{q(x)} = x^2 + \overline{s}x + \overline{p} \tag{29}$$

ラウス・フルビッツ安定判別法によれば, q(x)は, h(x) = q(x)r(x)の場合にのみ安定する. q(x)の安定性を確保するためにh(x)をフルビッツの安定判別法により安定性を調べたとき,以下の条件が示される.

$$\begin{cases} s_1 > 0\\ 2p_1 + s_1^2 + s_2^2 > 0\\ s_1p_1 + s_2p_2 > 0\\ p_1s_1^2 + p_2s_1s_2 - p_2^2 > 0 \end{cases}$$
(30)

フィードバック行列を安定にするには $A + \lambda BF$ の根が負の 実数部を持つ場合に f_1, f_2 を与える必要十分条件を見つける ことが必要となる. $F = I_{nN} \otimes [f_1 \quad f_2], L = L_G \otimes I_n$ とするとき, $A + \lambda BF$ に代入すると以下のようになる.

$$A + \lambda BF = I_{nN} \otimes \left(\begin{bmatrix} 0 & 1 \\ 0 & a_{22} \end{bmatrix} + \lambda \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} f_1 & f_2 \end{bmatrix} \right)$$
$$= I_{nN} \otimes \begin{bmatrix} 0 & 1 \\ \lambda f_1 & a_{22} + \lambda f_2 \end{bmatrix}$$
(31)

上記の行列の特性多項式は以下のように表される.

$$(+(\beta f_1)(-a_{22} - \alpha f_2)(\beta f_2) - (\beta f_1)^2 > 0$$

上記の式を簡略化すると式(34)のように表される.以下の式 (34)が形成を達成するための必要十分条件となる.

$$\begin{aligned} & -a_{22} - \alpha f_2 > 0 \\ & -2\alpha f_1 + (a_{22} + \alpha f_2)^2 + \beta^2 f_2^2 > 0 \\ & a_{22}\alpha f_1 + (\alpha^2 + \beta^2) f_1 f_2 > 0 \\ & -\alpha f_1 (a_{22} + \alpha f_2)^2 - \beta^2 f_1 f_2 (a_{22} + \alpha f_2) \\ & -\beta^2 f_1^2 > 0 \end{aligned}$$
(34)

aは正であるため、 $f_1 < 0, f_2 < 0$ であり、 f_2 の絶対値が大き い場合、式(34)のすべての不等式が満たされる. $a_{22} = 0$ と仮定すると、式(34)をさらに簡略化することができ、

$$\begin{cases} f_{1} < 0 \\ f_{2} < 0 \\ \frac{f_{2}^{2}}{f_{1}} < -\frac{\beta^{2}}{\alpha(\alpha^{2} + \beta^{2})} \end{cases}$$
(35)

とすることができる.上記の条件を満たすには,目的のグラ フラプラシアン行列の固有値を計算し, *λ* ≠ 0の固有値を使 用して上記の条件を満たすようにする.

無向グラフの場合,隣接行列は対象であり,実数の固有値し かないため,式(34)の条件は

$$\frac{(a_{22}+\lambda f_2)^2}{4\lambda} < -f_1 \tag{36}$$

となる.ここで λ はグラフラプラシアンの非ゼロ固有値($\lambda \neq 0$)であり、0 未満の f_1 を選択することで f_2 を解く.

2.5 エージェントの一列編成シミュレーション

エージェントN = 3として計算を行う. 完全無向グラフの場合, グラフラプラシアンの固有値は $\lambda_1 = 0$, $\lambda_2 = 3$ となる. $a_{22} = 0$ と仮定すると,式(21)の条件を適用すると,安定条件 は非ゼロの固有値($\lambda \neq 0$)を使用して次のようなになる.

$$\frac{(0+3f_2)^2}{4\cdot 3} < -f_1 \to \frac{3}{4}f_2^2 < -f_1$$
(37)

 $f_2^2 < -\frac{1}{3}f_1$

 $f_1 = -3/4$ とし、 f_2 を解くとフィードバックゲイン条件は次のようになる.

$$\begin{cases} f_1 < 0\\ -1 < f_2 < 0 \end{cases}$$
(38)

今回のシミュレーションは $f_1 = -0.70, f_2 = -0.99$ として数 値計算を行う.

Fig1 Three agents (Trail formation)

Fig3 Relative distance of agents

図1より,フォーメーション制御によって指定した一列編 隊を形成することが確認できた.また,図2,図3より今回 の仮想エージェントでは速度一致,等間隔の整列はおよそ5 秒の時間を要する.

3. 結言

本研究では、混雑空港への到着機についてマルチエージェ ントシステムの考え方を適用するため仮想のエージェント を用いてフォーメーション制御を行った. 混雑空域では最終的に一列の交通流が形成される. そのため, 今回はフォーメ ーション制御を利用し, 一列の編成による合流点への到着を 試みた. フォーメーション制御では要求通りのフォーメーシ ョンを形成し, その後, 一列の編成を維持しながら移動する ことを確認できた.

今後の課題として混雑空港への着陸を考えるため,短時間 で多くの航空機の到着管理を行う必要がある.そのため着陸 前の合流点での通過順序,航空機の前後間隔を考慮した上で フォーメーション制御を適用する必要がある.

謝辞

本研究を進めるにあたり,熱心かつ丁寧に指導していただいた指導教員の原田明徳准教授,岡宏一教授,様々な知識を がただいた研究室の先輩方,同期に感謝いたします.

引用・文献

- 国土交通省, "交通政策審議会航空分科会基本政策部会 とりまとめ", https://www.mlit.go.jp/common/001042443.pdf (2022 年1月16日参照)
- (2) 東俊一,永原正章,石井英明,林直樹,桜間一徳,畑中 健志,"マルチエージェントシステムの制御",コロナ社 (2015).
- (3) Anokina Shalimoon: Cooperative Control of Multi-Agent Systems: Consensus, Flocking and Formation Control, (2018)