曲面に対する緻密な機能膜作製技術の開発と ミストCVDによる MoS₂ 膜の形成メカニズムに関する基礎研究 Development of thin film fabrication technology for curved surfaces and study on growth mechanism of MoS₂ thin film by mist CVD

知能機械工学コース

川原村研究室 1245001 朝子 幹太

1. 研究背景

我々の生活においてパソコンおよび携帯電話などの高機 能電子端末は欠かせない存在である.それらの技術的な発展 には、半導体デバイスの微細化および集積度向上のために薄 膜作製技術が貢献してきた.また、昨今は見た目や使用感に 対して馴染みやすい形状、つまり有機的なデザインとして曲 面を取り入れる製品も多い.しかし、そういった形状に既存 技術を適用させる際、実際は折り曲げや貼り付けで対応する 他なく、平面に対する技術の応用に留まっている.そこで、 本研究では有機的な形状に対するナノテクノロジーの直接 的な適用を目指し、ミスト CVD による曲面への薄膜作製を 可能とする成膜物質と成膜装置の両面から検討を行った.

2. 先行研究

先行研究の①ミスト CVD による MoS2 膜の形成と②曲面 への薄膜作製についてそれぞれ述べる.

まず, ①について以下の(1)~(4)が行われた.

(1) 溶媒の選定

(2) MoS2 膜の形成に対する温度依存の検討

(3) 化学量論比に基づいた濃度の溶液を用いた成膜実験

(4) 成膜時間が膜厚に与える影響の調査

溶媒の選定では前駆体材料の完全な溶解や溶媒種による 成膜の可否を主な評価軸とし、メタノール溶媒が適している ことを見出した.X線を用いた反射率測定では、形成された MoS2 膜の膜密度が報告例の1/3以下であったことに加え [1]、その他の測定手法において得られる結果からは膜の形成 がうかがい知れる程度であった。また、成膜時間による膜厚 変化は確認されていない.

②については、成膜装置「KAGUYA」を用いて円筒管内壁 に原料ミストの吹き付けを行い、円周方向に均一なリング状 薄膜の形成を試みた.ミスト CVD の特徴の一つである、原 料搬送における流体操作性の良さを活かして、円筒管内壁で リング状薄膜の形成が可能であることを示した.しかし、そ の過程でノズル等の位置調整が非常に繊細であることがわ かり、幾度も装置改良が求められた.また、同装置の成膜プ ロセスでは、ノズルの形状を成膜対象の表面形状に合わせる 必要があり、ミスト流の操作性における自由度の高さを活用 できてない.そこで、薄膜として形成する物質の選定や曲面 に対する成膜プロセスを再検討するに至った.

3. 研究内容

先行研究で MoS2 膜の形成のために検討された実験条件の 各項目は、知見がない物質の成膜を試みる際に検討する代表 的なものであった.しかし、各項目の変化幅や、先行研究で 得られた各測定手法による結果および考察を受け、実験条件 に対する最適化の余地が認められた.そこで、本研究では 原料濃度,成膜温度,搬送ガス流量および硫黄前駆体の濃度 等の変化が薄膜の成長や特性に与える影響を調査した.基本 的な成膜条件を先行研究同様とし,表1に示す.また,本研 究で値を変えた項目を赤字で表示する.各実験条件で成膜し た薄膜の状態はラマン分光法やX線による測定(X線回折,反 射率測定)で評価し,得られたデータと報告例を比較した.

Table1 Experimental conditions.		
Solute	:	$(NH_4)_6 Mo_7 O_{24} \cdot 4H_2 O$, Thiourea
Solvent	:	MeOH
Concentrate [mol/L]	:	$(NH_4)_6 Mo_7 O_{24} \cdot 4H_2 O/$ Thiourea = 0.00180/0.050 ~ 0.00720/0.20
Growth Temp [°C]	:	350 ~ 450, int. 25°C
Growth Time [min]	:	10
c.g., N ₂ [L/min]	:	2.5
d.g., N ₂ [L/min]	:	1.5, 4.5
[Mo] / [S]	:	1/2 ~ 1/4
Substrate	:	Quartz(30×30 mm, t=0.5 mm)
Ultrasonic transducer	:	2.4MHz, 24V, 0.6A

4. ミスト CVD による MoS2 膜の成膜条件

4.1 MoS2 膜の形成と原料濃度の関係

まず、先行研究の条件に対する前駆体濃度の増加が成膜に 与える影響を検討した.表1に示した成膜条件に対して各前 駆体濃度を先行研究の1倍,2倍,4倍の濃度とした。[Mo]/[S] に示す MoとSのモル比は先行研究と同様に、供給した硫黄 の副反応を考慮して 1:4 とした。図 1(a)に各濃度で作製され た薄膜の GIXD によるピークパターンを示す。同図から、20 =14.4 [deg]付近にピークが確認でき、原料濃度の増加に伴っ てピーク強度も増加した.得られたピークは MoS2の六方晶 構造に由来する(002)面のピークであり[2]、先行研究で得ら れたグラフと比較するとピーク強度とその鋭さが増してい ることがわかった。以上の結果から、最も結晶性が優れてい ると判断された(NH₄)₆Mo₇O₂₄・4H₂O/Thiourea = 0.0072 / 0.20 [mol/L]を前駆体の基準濃度とし、その後の成膜実験で用いる こととした.また、ここで定める基準濃度以上に前駆体材料 が十分に溶解する可能性があり、その最大濃度については別 途検討が必要である.

4.2 MoS2 膜の形成と成膜温度の関係

次に、成膜温度を調査した. 原料濃度は前節実験と同様で ある. 成膜温度は 350° ~450°Cにおいて 25° のみに設定し, ここでは 350° , 400° , 450° Cで作製した試料に対して GIXD で得られたピークパターンを示す. 低温側の 350° Cから 400° の間で MoS₂膜の結晶性改善が見られた. 一方, 400° Cからさ らに高温成長となる 450° Cでは $2\theta = 12.6$, 25.6, 36.6, 58.8[deg]に MoS₂以外の物質によるピークが出現した. この未確 認物質の同定のため, 文献を調査したところ[3], α -MoO₃ で

あることがわかった.この結果から、400℃付近の温度帯で MoS₂ と α-MoO₃ の形成が切り替わるポイントが存在すると 推察された.本論では 375℃および 425℃における成膜実験 の結果についても報告する.

4.3 MoS2 膜の形成と搬送ガスの流速の関係

前節までに、原料濃度、成膜温度の変化による結晶性改善 の傾向が掴めたため, 原料ミストの流速が薄膜形成に与える 影響を検討した.本節実験では、原料供給量を固定の上、原 料ミストの反応炉内流速が速い場合と遅い場合を希釈ガス (以下 d.g.)の流量で操作し, 設定した流量は d.g.=1.5, 4.5 [L/min]である. 図 1(c)に示す通り, d.g.=4.5 [L/min]よりも d.g.=1.5 [L/min]の方が, 形成された MoS2 の結晶性が優れて いた.この結果から、原料ミストの反応炉内流速が小さい時、 つまり各原料液滴の反応炉における滞留時間の長い方が薄 膜成長を促進させていることがわかった. また, そのピーク 強度や鋭さはそれまでに得られた試料の中でも際立つもの であったが、同時に20=9.0 [deg]付近に新たなピークが出現 した. そのピーク位置が α-MoO3 以外の物質であることから 新たに文献調査を行うと,直方晶硫黄に由来するピークであ ることがわかった.以上の結果より、反応炉内の原料流速を 小さくすると MoS2 膜の結晶性が改善されるが、直方晶硫黄 も形成され、混晶状態になってしまう可能性も示された.実 際, 20 角度 30~70 [deg]においても微小なピークが多数見ら れた.

4.4 MoS₂ 膜の形成と原料溶液における [Mo] / [S] の関係

前節の実験結果から、良質な MoS2 膜の形成に対して硫黄 の供給量がカギを握ることが推察された. そこで, 硫黄のモ ル濃度が成膜に与える影響を検討した.まず、図1(d)に示す GIXD の測定結果から, 硫黄のモル濃度を増加させると MoS2 由来のピークの強度が減少し、2θ=12.0 [deg]付近のピークと 合成されたブロードなピークが確認された.一方,硫黄のモ ル濃度を減少させると MoS2 に由来するピークが確認されな かった.この結果から,硫黄前駆体の濃度を減少させると反 応炉内の基板表面近傍で硫黄の供給量が不足し, 逆に増加さ せると硫黄の過剰な供給によって MoS2 以外の物質が形成さ れ,混晶状態になってしまうことが考えられる.

4.5 ミスト CVD における MoS2 膜の形成メカニズム

本研究のミスト CVD による MoS2 膜の形成では,以下の2 点が確認されている.

- (1) [Mo]/[S]が 1/2, 1/3 の時, GIXD ピークパターンで MoS₂ の形成が確認されないが、1/4 で同材料由来の鋭いピー クが出現し、1/5 では1/4 の時よりも同ピークの強度が 減少する.
- 成膜温度が 350~400℃において, 高温になるほど MoS₂ (2)由来のピークの強度が増加するが、400℃以上では α-MoO3の形成が確認され、モリブデンの酸化が進行する. 特に,(2)については硫黄前駆体の濃度を増加させても400℃ 以上で α-MoO3 が形成される. そのため, 硫黄が MoS2 の形 成に寄与できていないか、あるいは一度 MoS2 が形成されな がれも高温の成膜空間で硫黄欠陥が生じた可能性がある.ま た,別の可能性としてミスト CVD の大敵ともいえる,意図 しない酸化反応が空気中の酸素によって生じたことも考え られる.この点に関しては、反応炉から試料を取り出す前に

基板温度を下げる等の操作を別途検討する必要がある.以上 より,(1)(2)から成膜条件として[Mo]/[S]=1/4,成膜温度400℃ が MoS2の形成に対して適しているとわかった.

Fig.1 GIXD pattern at different (a) concentration, (b)growth tempereature, (c) d.g. flow volume, and (d)different ratio of [Mo]/[S] 5. 新開発 LS ノズル

先行研究の「KAGUYA」による成膜実験から、成膜対象の 表面形状に合わせてノズルを作製し,厳密な位置調節を行う 点において時間的・経済的コストが高く,研究対象として不 向きであると考えられた. そこで, 先行研究[4]で開発された リニアソース式(LS)ノズルとペン型ノズルの組み合わせに よる新ノズルの開発を行うこととした. 3D プリンターを用 いて製作した試作品と水ミスト噴射実験の様子を、図2(a)と 図 2(b)にそれぞれ示す.図 2(b)からわかるように,噴出され たミスト流れが直ちに拡散することなく流れることがわか る. しかし, 試作に用いた 3D プリンターの都合上, 流路内 でフィラメントが蜘蛛の巣状の糸を形成し, ノズル内部の流 れが乱れ、川の字状のミストが噴出された. ミストを供給し ながらノズルを手で持ってゆらゆらと動かすと、塗装時の刷 毛のように流れがしなる様子が確認された.以上より,試作 モデルの製作における不都合な点があるものの, ノズルが十 分に機能する見込みがあるため、実際に本成膜プロセスに適 した素材での製作依頼をかけることとした.

Fig.2 (a)3D model of the new LS type nozzle (b)Water mist flow

6. 結言

本研究ではミスト CVD を用いた曲面に対する成膜技術の 開発と、各実験条件が MoS2の形成に与える影響を検討した. また,その結果として,硫黄の供給が膜形成にとって重要な 要素であることを見出し, 先行研究で作製した試料を合わせ ても現状で最も結晶性が良い MoS2 膜を作製することができ た. さらに、本研究によって実験条件に対する具体的な検討 材料を見出した.

文献

- [1] 佐藤翔太, 高知工科大学博士論文(2019)
- Gao et al. "Ferromagnetism in freestanding MoS2 nanosheets", 2 Nanoscale Research Letters 2013, 8:129
- [3] Rahmani et al. "Gas sensing properties of thermally evaporated lamellar MoO3", Sensors and Actuators B 145 (2010) 13-19
- [4] 朝子幹太, 高知工科大学学士論文(2019)