Numerical Consideration of Unstable Disturbances Growth Process on Hypersonic Boundary Layer Transition around Elliptic Cone

航空宇宙工学コース

航空エンジン超音速流研究室 1245033 青景 壮真

1. 緒言

近年、次世代の航空機として極超音速機の実用化を目指し 世界各国で様々な研究開発が行われている.極超音速機の 実用化が実現すると飛行時間の短縮を図ることが可能にな ると同時に高高度を高速で飛行するため、音速を超えて飛 行する際に発生するソニックブームを低減することができ る.一方で壁面近傍の境界層において乱流遷移が発生する と、機体表面での壁面加熱や摩擦抵抗が大幅に増える可能 性がある.そのため機体を守る熱防御システム(Thermal Protection System: TPS)を施す必要がある⁽¹⁾.しかし TPS は 機体重量を増加させる要因となり、なるべく最小限とする 必要がある.極超音速機実現のためには、機体設計時にあ らかじめ乱流遷移位置を把握し、正確な TPS 設計を行うこ とが極めて重要である.

極超音速機実現に向けた研究の一つに、Hypersonic International Flight Research and Experimentation (HIFiRE) プロ グラム⁽²⁾が各国の研究機関協力のもとで実施されている. 極超音速流れの基本的なデータ収集を目的とした研究開発 も行われており、例えば、極超音速風洞による流動計測が 行われ、実機を用いたフライトテストも実現している⁽³⁾. その中で HIFiRE-5 では楕円錐形状の遷移現象に主眼を置き、 T. J. Juliano と S. P. Schneider は極超音速風洞を用いて、楕円 錐模型周りの壁面で温度上昇を計測する実験を行った⁽⁴⁾. 実験より $Re = 11.8 \times 10^{6}$ [/m] 主流の時には境界層の薄い先 端部と長径側に加えて模型後方でもストリーク状の高い加 熱率分布が生じた.これは乱流遷移したことが原因と考え られており、クロスフローの影響も考慮した遷移の詳しい メカニズムの解明に向け、より詳しい流れ場の数値解析が 行われると同時に様々な条件で実験も行われている⁽⁵⁻⁷⁾.

一方、極超音速流れ場の安定性に関する理論研究も行われ ている. 流体の不安定性解析法は多くあるが, Navier-Stokes 方程式に二次元平行流近似を施し、流体の安定性を記述す る安定方程式(Orr-Sommerfeld方程式)に基づく擾乱の線形 成長を解析する線形安定性解析が最も基本的で代表的な手 法である.局所平行流近似を仮定した線形安定性理論 (Linear parallel Stability Theory: LST) やその近似を排除し た線形放物型安定方程式 (Linear Parabolized Stability Equations: LPSE) などの解析手法がある⁽⁸⁾. これらは流れの 安定性理論に即する解析手法で、擾乱の成長過程を追跡す ることができる. これまで HIFiRE-1 と呼ばれる円錐模型を 対象とした極超音速風洞実験と同条件下における LST や LPSE が行われた⁽⁹⁻¹¹⁾. その結果,飛行実験によって得られ た境界層遷移に関するデータベースを基に、様々な主流条 件での擾乱の成長率を得た. その他に流れ場の中で最も不 安定成長する周波数を持つ擾乱の特定にこれらの手法を用 い、得られた不安定成長する擾乱と低周波数擾乱を干渉さ せ非線形干渉(12)を確認した.

一方で同様に HIFiRE-1 を対象とした全体安定性解析⁽¹³⁾も 行われた⁽¹⁴⁾. この手法は 3 次元流れ場全体に微小擾乱を付 加し時間発展させることから複雑な流れ場に対しても安定 性解析を行うことができる. その結果,最大固有値に対す る固有モードが境界層外縁付近や衝撃層において,実験的 に観測された二次モード分布と類似した構造が得られた.

本研究では楕円錐模型(HIFiRE-5)周りの乱流遷移位置 予測を目的とし、模型周りの流れ場に対して全体安定性解 析を行い、擾乱成長の特徴を調べる.その後全体安定性解 析にて特徴的な固有モード分布が得られた箇所を抽出し, LPSEを用いて⁽¹⁵⁾乱流遷移に繋がる擾乱成長過程を調査する.

2. 数値計算法

2.1 平均流の支配方程式

HIFiRE-5の楕円錐模型周りの流れ場計算には3次元圧縮性 Navier-Stokes 方程式を用いた.

$$\frac{\partial \boldsymbol{Q}}{\partial t} + \frac{\partial (\boldsymbol{E} - \boldsymbol{E}_{\boldsymbol{v}})}{\partial x} + \frac{\partial (\boldsymbol{F} - \boldsymbol{F}_{\boldsymbol{v}})}{\partial y} + \frac{\partial (\boldsymbol{G} - \boldsymbol{G}_{\boldsymbol{v}})}{\partial z} = 0.$$
(1)

ここでQは保存量ベクトルE, F, Gは対流流束ベクトル, E_v , F_v , G_v は粘性流束ベクトルである. それぞれ,以下の ように得られる.

$$\boldsymbol{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho v \\ \rho w \\ e \end{pmatrix}, \qquad (2)$$

$$\boldsymbol{E} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uv \\ \rho uw \\ (e+p)u \end{pmatrix}, \quad \boldsymbol{F} = \begin{pmatrix} \rho v \\ \rho uv \\ \rho uv \\ \rho v^2 + p \\ \rho vw \\ (e+p)v \end{pmatrix}, \quad \boldsymbol{G} = \begin{pmatrix} \rho w \\ \rho uw \\ \rho w \\ \rho vw \\ \rho w^2 + p \\ (e+p)w \end{pmatrix},$$
(3)

$$E_{\nu} = \begin{pmatrix} 0 & & \\ & \tau_{xx} & & \\ & & \tau_{xy} & & \\ & & & \tau_{xz} & & \end{pmatrix}, \quad (4)$$

$$F_{v} = \begin{pmatrix} u\tau_{xx} + v\tau_{xy} + w\tau_{xz} - q_{x} \\ 0 \\ \tau_{yx} \\ \tau_{yy} \\ \tau_{yy} \end{pmatrix},$$
(5)

$$\boldsymbol{G}_{v} = \begin{pmatrix} \tau_{yz} & \tau_{yy} + w\tau_{yy} - q_{y} \\ v\tau_{yx} + v\tau_{yy} + w\tau_{yz} - q_{y} \\ 0 & \tau_{zx} \\ \tau_{zy} \\ \tau_{zz} \\ u\tau_{zx} + v\tau_{zy} + w\tau_{zz} - q_{z} \end{pmatrix}, \quad (6)$$

ここで、*ρ*は密度、*u*は速度の*x*方向成分、*v*は速度の*y*方向 成分、*w*は速度の*z*方向成分、*e*は単位体積あたりの全エネ ルギー、*p*は圧力を表し、理想気体の状態方程式、

$$p = (\gamma - 1) \left\{ e - \frac{(\rho u)^2 + (\rho v)^2 + (\rho w)^2}{2\rho} \right\},$$
 (7)

より求める. γ は比熱比で $\gamma = 1.4$ の空気とした.また τ は粘 性応力,qは熱流束を示す.粘性応力 τ と熱流束qは Stokes の 定理と Fourier の法則を用いて,

$$\tau_{xx} = \frac{2}{3}\mu \left(2\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} - \frac{\partial w}{\partial z} \right), \tag{8}$$

$$\tau_{yy} = \frac{2}{3}\mu \left(2\frac{\partial v}{\partial y} - \frac{\partial w}{\partial z} - \frac{\partial u}{\partial x} \right), \tag{9}$$

$$\tau_{zz} = \frac{1}{3}\mu \left(2\frac{\partial}{\partial z} - \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right), \tag{10}$$
$$\left(\frac{\partial u}{\partial v} - \frac{\partial v}{\partial v} \right) \tag{11}$$

$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial v}{\partial y} + \frac{\partial w}{\partial x} \right), \tag{11}$$

$$\tau_{yz} = \tau_{xy} = \mu \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial z} \right), \tag{12}$$
$$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial z} \right), \tag{13}$$

$$\partial_{zx} \partial_{xz} \partial_{z} \partial_{z} \partial_{z} \partial_{z} \partial_{z}$$

$$q_x = -k \frac{\partial T}{\partial x}, \quad q_y = -k \frac{\partial T}{\partial y}, \quad q_z = -k \frac{\partial T}{\partial z}, \quad (14)$$

のように与えられる.ここでkは熱伝導係数,Tは温度を示す.支配方程式の離散化には有限体積法を用いて行い,数値流束には AUSM-DV⁽¹⁶⁾を用い,WENO 法⁽¹⁷⁾を用いて流束を再構築することで5次精度とした.時間積分には3次精度のTVD-Runge-Kutta 法⁽¹⁸⁾を用いた.

2.2 全体安定性解析の概要

全体安定性解析の流れを図 1 に示す. CFD と組み合わせ ることで流れ場全体に対して安定性解析を行う. 与えた擾 乱の時間発展に対する固有値問題に帰着させ, Amoldi 法⁽¹⁹⁾ に基づいて近似行列を算出し,得られた固有値から流れ場 の安定性を判断する. また,固有ベクトルから流れ場に含 まれるの最も不安定なモードを抽出した.

Fig. 1 Flowchart of global stability analysis

2.3 LPSE の安定方程式

ー般に流体の安定性を調べるときに用いる安定方程式と して、定常な 2 次元非圧縮粘性流れを仮定した、Orr-Sommerfeld 方程式を使う.しかし本研究では圧縮性と 3 次 元性を無視することは困難なため、3 次元圧縮性 Navier-Stokes 方程式から導出する安定方程式用いた.3 次元圧縮性 Navier-Stokes 方程式における各物理量 q(x,y,z,t) = (u,v,w,ρ,T) を、CFD 計算から得られた準定常解の基本量 \overline{q} 、微小擾乱部 q'としたとき、

$$\boldsymbol{q} = \overline{\boldsymbol{q}} + \boldsymbol{q}',\tag{15}$$

と分解することができる.次に準定常解の基本量 \bar{q} は自身 で支配方程式を満たすとして差し引くことができ、2次以上 の微小項を線形近似することで次のような線形攪乱方程式 を得られる.

$$\left(\boldsymbol{L}_{t} \frac{\partial}{\partial t} + \boldsymbol{L}_{x} \frac{\partial}{\partial x} + \boldsymbol{L}_{y} \frac{\partial}{\partial y} + \boldsymbol{L}_{z} \frac{\partial}{\partial z} + \boldsymbol{L}_{xx} \frac{\partial^{2}}{\partial x^{2}} + \boldsymbol{L}_{yy} \frac{\partial^{2}}{\partial y^{2}} \right)$$

$$+ \boldsymbol{L}_{zz} \frac{\partial^{2}}{\partial z^{2}} + \boldsymbol{L}_{xy} \frac{\partial^{2}}{\partial x \partial y} + \boldsymbol{L}_{yz} \frac{\partial^{2}}{\partial y \partial z} + \boldsymbol{L}_{zx} \frac{\partial^{2}}{\partial z \partial x} \right) \boldsymbol{q}' = \boldsymbol{0}.$$

$$(16)$$

 L_t , L_x , L_y , L_z , L_{xx} , L_{yy} , L_{zz} , L_{xy} , L_{yz} , L_{zx} は 5×5 の係数行列であり,平均流における x と y の関数である.

LPSE 解析を行うために,計算開始位置で一度 LST を実行 する必要がある.そこで,式(16)に局所平行流近似を施した 安定方程式を得る.まず擾乱として,

$$\boldsymbol{q}'(x, y, z, t) = \widetilde{\boldsymbol{q}}(y)e^{i(\alpha x + \beta z - \omega t)} + c.c.$$
(17)

の形で表現されるノーマルモードを加える.ただし, \tilde{q} は波の振幅関数, a, β はx, z 方向の空間波数, ω は波の周波数, c.c は右辺第 1 項の複素共役を示す.一般に擾乱は時間的増幅と空間的増幅に分けることができる.本研究においては 擾乱の空間的増幅について着目する.そこため,各方向の 空間波数 a, β は実数とした.このとき x 方向擾乱の空間増幅率は $-\alpha_i$ と表現でき,流れ場の安定性について次のよう に分類することができる.

$$-\alpha_i = \begin{cases} > 0 & \pi \not = z \\ = 0 & \pi \not = z \\ < 0 & \pi \not = z \\ < 0 & \pi \not = z \end{cases}$$
(18)

さらに擾乱の伝搬角度 $\overline{\psi}$ は,

$$\bar{\psi} = \tan^{-1} \left(\frac{\beta_r}{\alpha_r} \right), \tag{18}$$

で算出される.

最後に式(17)を式(16)代入すると、次式の LST の安定方程式 が得られる.

$$A\tilde{q} + B\frac{d\tilde{q}}{dy} + C\frac{d^2\tilde{q}}{dy^2} = 0.$$
 (19)

ここで係数行列 A, B, C は CFD で得られた平均流の結果 と擾乱パラメータの α , β , ω で構成される.

計算開始位置における初期条件を式(19)から得たのち,抽 出した二次元平面内でLPSEを行う.LPSEでは式(16)に対し て弱非平行流近似を施し安定方程式を得る.ここでは流れ 場の非平行性と壁面曲率も考慮できる近似方法で,一般に LPSE において擾乱は次のような擾乱型を定義する.

$$\boldsymbol{q}'(x,y,z,t) = \widetilde{\boldsymbol{q}}(x,y)e^{i\left(\int_{x_0}^x \alpha dx + \beta dz + \omega t\right)}$$
(20)

式(20)を式(16)に代入すると,次式の LPSE の安定方程式が 得られる.

$$A\tilde{q} + B\frac{\partial\tilde{q}}{\partial y} + C\frac{\partial^2\tilde{q}}{\partial y^2} + D\frac{\partial\tilde{q}}{\partial x} = 0.$$
 (21)

式(21)によって得られる擾乱の増幅率を式(18)に基づいて追っていくことで,弱非平行流における擾乱の成長を解くことができる.

2.4 LPSE の概要

LPSEの流れを図2に示す.全体安定性解析で不安定モード 分布が得られた箇所の境界層の準定常解を,壁面に垂直な2 次元平面で抽出・LPSE 解析を行う.計算開始位置($x = x_0$) における擾乱成長率が既知でなければならないが,LPSE 解 析において擾乱成長率は主流方向 x_{flow} の関数となっている. そこで計算開始位置でLSTを式(19)に基づいて行い,初期値 として固有ベクトルと擾乱成長率を得る.この初期値と計 算開始位置より1点下流の平均流の解から式(21)を解き,固 有ベクトルから擾乱成長率を算出する.ここまでの過程を 計算終了位置($x = x_{end}$)まで繰り返す.最後に計算開始位 置から計算終了位置までの擾乱成長率を上流から積分する ことで擾乱の振幅増幅の度合いを見積もることができる.

Fig. 2 Flowchart of LPSE

3. 平均流計算と全体安定性解析

3.1 計算格子

T. J. Juliano と S. P. Schneider の風洞実験に用いられた楕円 錐模型の HIFiRE-5 に従う. 楕円錐模型周りの計算格子全体 を図 3 に示す. 断面アスペクト比は 2:1 となり, 楕円錐底面 の長軸半径が 82 [mm], 短軸半径が 41 [mm]である. 軸方向 長さは 328 [mm]で, 先端は短径側で 0.95 [mm]の球状となっ ている. 本研究では迎角がない状態を考えるため,計算対 象は模型の 1/4 部分とした.また計算格子にはあらかじめ計 算した流れ場より衝撃波面位置をある程度特定し,衝撃波 付近で計算格子幅が小さくなるように作成した.総格子点 数は周方向に 257 点,主流方向に 321 点,壁面垂直方向に 257 点の構造格子を用いた.最小格子幅*Δx*minは*Δx*min = 0.5×10⁻³[mm] とし,境界層内には格子点数が最低 65 点存 在するように作成した.

Fig. 3 Computational domain and Mesh around the elliptic cone

3.2 平均流,全体安定性解析の計算条件

主流条件は風洞実験に用いられた値に従い表1に示す.臨 界レイノルズ数よりやや高く乱流となる主流レイノルズ数 を採用した.理想気体を仮定し,比熱比 $\gamma = 1.4$, プラント ル数Pr = 0.72とした.全体安定性解析における固有値計算 の反復回数は30回で十分に収束していたため,Arnoldi法に よる反復回数は30回とした.擾乱の大きさは主流密度に対 して約1.0×10⁻⁶程度の大きさとし,積分時間は流体が模型 長さの約40%を進む時間である,0.15[ms]として与えた.

	Table 1 Freestream condition			
$Re \times 10^6$ [/m]	М [—]	U_{∞} [m/s]	T_{∞} [K]	T _{wall} [K]
11.8	6.0	869.7	52.3	300.0

3.3 平均流の計算結果

図4にCFDから得られた平均流のマッハ数分布と壁面熱 流束分布を示す.模型全体が衝撃波に覆われており,衝撃 層が形成されている.模型前方では縦渦が形成され始めて おり,それらは境界層の外縁付近に定在した準定常解とな っている.また図に壁面近傍の平均流の結果を示す.境界 層中程度位置を通過したストリームリボンと境界層外を通 過した流線である.まず,流線から境界層外の流れは物体 形状に沿って流れ去っていくことが確認できる.一方,ス トリームリボンは流線とその線上での各々の位置における 流速ベクトルの rot を合わせて表現したものである.リボン のねじれは渦度ベクトルのねじれに相当する.ストリーム リボンを見ると模型先端部から流入した流体は境界層内で 長径側から短径側へ曲がりながら後方へ向かうクロスフロ ーとなっている.

Fig. 4 Contour of Mach number and wall heat flux around elliptic cone

Fig. 5 Stream ribbons in boundary layer and streamlines above the boundary layer

3.4 全体安定性解析の計算結果

図 6 (a) に、境界層厚さ約 90%位置での最大固有値に対 する温度擾乱の固有モード分布を示す. 増幅率が正となっ た位置にて擾乱成長が伺える. また, (b) には T. J. Juliano と S. P. Schneider による壁面加熱率の計測結果を示した. ま ず,ストリーク形状分布については、双方とも類似した位 置、形状となっていることがわかる. また T. J. Juliano らの 実験では、上流から伸びるストリークが横軸 x = 255 [mm] 付近から乱れ始め、x = 275 [mm] 付近にて崩壊し、以降、 乱流へと遷移している.

ストリーク分布の乱れ始めの位置座標 $(x_t, z_t) =$ (255mm,30mm)を通過する流線をまず描き,その線上での温度擾乱の固有モード分布を抽出し,図7に示す.各曲線の違いは壁面からの距離であり,乱れ始め位置 (x_t, z_t) における境界層厚さ δ で測っている.開始点において境界層厚さ40-70%位置を通過する際に,温度擾乱が増幅されていることがわかる.方や,壁面近傍から $30\%\delta$ までは流れが安定化し擾乱成長がなく,また $90-100\%\delta$ の境界層外縁でも擾乱成長がなかったため図示していない.

以上より粘性が支配的な壁面近傍から 30% δ では流れが安 定化している.また,90-100%δの境界層外縁でもクロス フローが弱まり,境界層外部の模型形状に沿う流れが優位 となり,擾乱成長が抑制されている可能性がある.境界層 厚さ 40 - 70%位置ではクロスフローによる渦度変化に伴う 散逸によって,温度擾乱の増幅へ影響を与えた可能性があ る⁽²⁰⁾.一方で遷移が起きない低レイノルズ数主流条件の平 均流結果に全体安定性解析を行った.解析結果より実験と 同様にストリーク分布が弱まり安定化していることから, 全体安定性解析は擾乱の線形成長段階のレイノルズ数によ る変化を十分に記述できる^(21,22).

- Fig. 6 (a) The eigen mode of temperature corresponding to the largest real eigenvalue at 90% of the boundary layer thickness
 - (b) Measurement of wall temperature rise by T. J. Juliano and S. P. Schneider

Fig. 7 The eigen mode of temperature corresponding to the largest real eigenvalue on the streamline passing through the break-start position

4. LPSE による安定性解析

前節では全体安定性解析による擾乱の増幅を最大固有値 に対する温度擾乱の固有モードに着目して考察を行った. この全体安定性解析は流れ場全体に対して擾乱を付加し, 擾乱の増幅を見るため,複雑な流れ場に対しても支配的な 不安定な構造を空間的に抽出することができる.一方,擾 乱成長に対する固有値問題を解き,固有モードを抽出する 際に,Amoldi 法による近似行列から近似固有値を得た.こ のことから,得られた結果の物理的解釈が困難であること が課題として挙げられる.そこで全体安定性解析において 最大固有値に対する擾乱の固有モード分布が増幅している 箇所の平均流を二次元平面で抽出し,平面内でLPSEを適用 して安定性解析を行う.

4.1 LPSE の計算領域

図 8 に全体安定性解析から得られた境界層内の最大固有値 に対する温度擾乱の固有モード分布に関する結果と,乱れ 開始位置 (x_t, z_t) を通過し,壁面に対して直交する断面内で の流速分布を示す.また図 9 に LPSE 解析を行う境界層内の 流速分布を示す.抽出断面から境界層境界層厚さ δ は主流 速度 \overline{U} に対して,0.99 \overline{U} となる高さとした.また模型先端 部を x = 0 [mm] としたとき,計算開始位置 x_0 は, $x_0 =$ 8.5 [mm] とした.また,計算開始位置から主流方向へ193 点抽出し LPSE 解析を行った.

Fig. 8 Domain and location of LPSE analysis surface for amplification of the eigen mode of temperature corresponding to the largest real eigenvalue

Fig. 9 Domain of LPSE analysis surface at the boundary layer (Change the aspect ratio)

4.2 Stationary crossflow 波を想定した初期擾乱に対する LPSE

境界層内における不安定性の一つに Crossflow 不安定性が あり、大きく Stationary crossflow 波と Traveling crossflow 波 の2つに分けることができる. Stationary crossflow 波は主に 壁面粗さと主流内に含まれる乱れによって引き起こされ、 Traveling crossflows よりも高周波帯で観測されることがわか っている.まず抽出した LPSE 解析断面において Stationary crossflow 波を想定した初期擾乱によって、擾乱の成長率を 調べた.本計算では擾乱は流線に沿って下流へ流れていく ものとみなした.抽出断面に対して境界層中程度位置を流 れる流線とのなす角は約10[deg]で,擾乱波も流線に沿って 伝搬すると仮定し擾乱の伝搬角度を10[deg]と設定した.図 10に擾乱成長率の積分値を示す.一般にStationary crossflow の特性周波数は200 – 350 [kHz]と計測されており⁽²³⁾,本 解析でも約310 [kHz]の周波数での擾乱の増幅が確認できた. 擾乱が後流へ伝わるにつれ成長しているのが確認でき,ス トリーク分布乱れ始め位置(x_t, z_t) = (255 mm, 30 mm)に相 当する位置では計算開始位置より大幅に増幅している.ま た,成長率の積分値がスパン方向への伝搬なしの時と比較 し, $O[10^2]$ 程度大きくなっており,流線と同様の方向へ伝 搬する Stationary crossflow 波の方が支配的である可能性が高 いと考えられる.

Fig. 10 Integrated amplification rate at each calculation point (Stationary crossflow waves : 10 [deg])

4.3 Traveling crossflow 波を想定した初期擾乱に対する LPSE

次に Traveling crossflows を想定した擾乱を付加し Crossflow 部における擾乱成長を調査する. Traveling crossflow 波は実際の飛行中に確認はされていないものの, 風洞実験において境界層内で渦状の擾乱が生成されること で発生することが確認されており、これらの不安定性が境 界層の乱流遷移の引き金になる(24)との報告もある.この擾 乱波の特性周波数は約40-60[kHz]といわれており(25),こ こでは30-70 [kHz] の範囲でLPSE 解析を行った. ストリー ク分布乱れ始め位置(x_t, z_t) = (255 mm, 30 mm)における境 界層厚さ約 90% 位置の固有モード分布平面上の x-z 平面 内で,ストリークに対して直交する方向と抽出断面のなす 角である 95 [deg] を擾乱の伝搬角度として導入した場合の擾 乱成長率の積分値を図 11 に示す.約 57 [kHz] での成長が確 認でき、下流にいくにつれ徐々に擾乱成長率が大きくなっ ていることが確認できる.また流線方向に伝搬する場合や 抽出断面に沿う方向への伝搬を想定した場合の中で最も成 長率の積分値が大きな値となり支配的な擾乱波の一つであ る可能性が高い. また擾乱が主流と同じ速度で伝搬すると 過程し、主流方向のみの擾乱伝搬を想定した LPSE 解析の結 果,周波数と擾乱波の波長の関係から,境界層厚さ約70% 位置で支配的である可能性が高いことが確認できた.

4.4 Mack 波を想定した初期擾乱に対する LPSE

極超音速境界層においては Mack の 2 次モードと呼ばれる 数百 kHz~数 MHz の不安定モードが支配的となっている. 実験においても壁面近傍で縄状の構造が確認されている⁽²⁶⁾. またこのモードは高周波擾乱であり,境界層内で音波とし

Fig. 11 Integrated amplification rate at each calculation point (Traveling crossflow waves : 95 [deg])

て伝搬することから、本計算では擾乱は抽出断面に沿って 下流へ流れていくものとみなした.

図 12 に擾乱成長率の積分値を 100 [kHz] - 1 [MHz] の範 囲で LPSE を行った結果を示す.約710-920 [kHz] におい て成長率が大きい擾乱が頻繁に現れていることが確認でき る.特に約 850 [kHz] の初期擾乱を導入した場合が最も下流 で増幅している.

Fig. 12 Integrated amplification rate at each calculation point (Mack waves : 0 [deg])

4.5 境界層内の不安定擾乱と乱流遷移についての考察

図13にここまでのLPSE解析結果の位置関係を模式図で示 す. 上流では Attachment line 側のx = 37.6 - 53.7 [mm]で T-S波を想定した擾乱が大きく成長し不安定化した.不安定化 した流体はクロスフローによる影響で Crossflow 部へと速度 ベクトルを変えながら下流へ流れる.また下流に位置する Crossflow 部では境界層内での渦度が大きい. 一般に渦度の 大きい箇所を通過する際に, Traveling crossflow 波が発生す る可能性が高い(27)とされており、本解析でも同様の不安定 波がストリーク分布に直交する方向へ伝搬する結果が得ら れた. 以上より Crossflow 部で,不安定波である Traveling crossflow waves が境界層中程度位置で発生し、全体安定性解 析の結果である各方向速度擾乱に対する固有モード分布値 の増加に相当すると考えられる. そこへ上流から T-S 波や Stationary crossflow 波を内在している不安定化した流体が流 入したり, 音波の擾乱でもある Mach 波が境界層内で伝わり 干渉すること(28,29)で、乱れ開始位置における乱流遷移が開 始し, 乱流化によって衝撃層内の高温流体が直接壁面へ加 熱を及ぼすことで温度擾乱に対する固有モード値も増幅し た可能性が考えられる.

5. まとめ

本研究では極超音速流内における楕円錐模型周りの乱流 遷移位置予測を目的とし、まず実験において乱流遷移した 主流条件を用いて平均流の計算を行い、模型周りの流れ場 を比較的良好な解像度で解くことができた.

次に平均流に対して全体安定性解析を行った.境界層厚 さ約 90%位置での最大固有値に対する温度擾乱の固有モー ド分布は実験で得られたストリーク状の加熱率分布と同様 の分布傾向となった.実験での乱れ開始位置において,境 界層厚さ40-70%を通過する流線上での最大固有値に対する 温度擾乱に対する固有モード分布が線形成長段階の範囲内 で増幅する傾向が得られた.

最後に実験においてストリーク分布が乱れ始める位置を 乱れ開始位置として、この部分を通過する2次元断面を抽出 し、この断面内の境界層で擾乱の挙動を記述する安定方程 式を解き擾乱成長を追った.乱れ開始位置を通過する流線 付近では、流れに沿って伝搬する Stationary crossflow 波やス トリーク分布の法線方向に伝搬する Traveling crossflow 波、 境界層内に広がる Mack 波の成長を確認した.これらの不安 定波が干渉しあうことで模型周りの乱流遷移が開始し、実 験においてストリーク状の加熱が広がった可能性があると 考えられる.

参考文献

- D. E Glass, "Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles," AIAA Paper 2008-2682, 2008.
- (2) D. J. Dolvient, "Hypersonic international flight research and experimentation (HIFiRE) fundamental sciences and technology development strategy," AIAA Parer 2008-2581, 2008.
- (3) D. E. Grass, D. P. Capriotti, T. Reimer and M. ütemeyer, "Testing of DLR C/CSiC for HIFiRE 8 scramjet Combustor," 7th European Workshop on Thermal Protection Systems and Hot Structures, 2014-3089, 2014.
- (4) T. J. Juliano and S. P. Schneider, "Instability and Transition on the HIFiRE-5 in a Mach-6 Quiet Tunnel," AIAA paper 2010-5004, 2010.
- (5) D. J. Dinzl and G. V. Candler, "Direct Numerical Simulation of Crossflow Instability Excited by Microscale Roughness on HIFiRE-5," 54th AIAA Aerospace Sciences Meeting, 2016-0353, 2016.
- (6) D. J. Dinzl and G. V. Candler, "Analysis of Crossflow Instability on HIFiRE-5 using Direct Numerical Simulation," AIAA Paper 2015-0279, 2015.
- (7) M. P. Borg and R. L. Kimmel, "Ground Test Measurements of Boundary-Layer Instabilities and Transition for HIFiRE-5 at Flight-Relevant Attitudes," 47th AIAA Fluid Dynamics Conference, AIAA Paper 2017-3135, 2017.

- (8) T. Herbert, "Parabolized Stability Equations," *Annual Review* of *Fluid Mechanics*, Vol. 29, 1997, pp. 245-283.
- (9) F. Li, Choudhari. M, Chang. C, R. Kimmel, D. Adamczak and M. Smith, "Transition Analysis for the HIFiRE-1 Flight Experiment," AIAA Paper 2011-3414, 2011.
- (10) K. Itoh and H. Tanno, "Resonant growth of surface pressure fluctuation in hypersonic boundary layer in shock tunnel," AIAA Paper 2017-1462, 2017.
- (11) L. J. Melander, A. Knutson, J. D. Reinert and G. V. Candler, "Stability Analysis of HIFiRE 1 with Flight Wall Temperatures," AIAA Paper 2020-3026, 2020.
- (12) 宇田惟一朗, "極超音速境界層における非線形擾乱成 長に関する数値的研究," 東北大学大学院修士学位論 文, 2020.
- (13) V. Theofilis, "Advances in Global Linear Instability of Nonparallel and Three-Dimensional Flows," Progress in Aerospace Sciences, Vol. 39, No. 4, 2003, pp. 249–315.
- (14) 松瀬裕二, "円錐形状周りにおける極超音速流れの全体安定性," 東北大学大学院修士学位論文, 2016.
- (15) 井手優紀, "超音速 3 次元境界層の遷移予測法の高精 度化に関する研究," 東京大学大学院,博士論文, 2016.
- (16) Y. Wada and M. S. Liou, "A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities," AIAA Paper 1994-0083, 1994.
- (17) X. D. Liu, S. Osher and T. Chen, "Weighted Essentially Nonocillatory Schemes," *Journal of Computational Physics*, Vol. 115, 1994, pp. 200-212.
- (18) S. Gottlieb and C. W. Shu, "Total Variation Diminishing Runge- Kutta Schemes," ICASE Report No. 96-50, 1996.
- (19) W. E. Arnoldi, "The principle of minimized iterations in the solution of the matrix eigenvalue problem," *Quarterly of Applied Mathematics*, Vol. 9, No. 1, 1951, pp. 17-29.
- (20) 青景壮真,荻野要介, "極超音速流内における楕円錐 模型周りの擾乱成長過程の調査,"第28回日本流体力 学会中四国・九州支部講演会講演論文集,日本流体学 会,2021, pp. 1-3.
- (21) 青景壮真,荻野要介,"全体安定性解析を用いた極超 音速流における擾乱成長過程の調査,"第64回宇宙科 学技術連合講演会講演論文集,日本航空宇宙学会, JSASS-1010-4631,2020,pp 1-6.
- (22) S. Aokage, Y. Ogino, "Investigation of Unstable Disturbances in a Hypersonic Boundary Layer around Elliptic Cone by Global Stability Analysis," 18th International Conference on Flow Dynamics Proceedings, 2021, pp. 128-130.
- (23) J. B. Edelman and S. P. Schmeider, "Secondary Instabilities of Hypersonc Stationary Crossflow Waves," AIAA Journal, Vol. 56, 2018-2514, 2018.
- (24) H. Deyhle and H. Bippes, "disturbance Growth in an Unstable Three-Dimensional Boundary Layer and Its Dependence on Environmental Conditions," *Journal of Fluod Mechanics*, Vol. 316, 1996, pp. 73-113.
- (25) M. P. Borg and R. L. Kimmel, "Traveling Crossflow Instability for the HIFiRE-5 Elliptic Cone," AIAA Journal, Vol. 52, 2015-2514, 2015.
- (26) S. J. Laurence et al., "Visualization of a hypersonic boundarylayer transition on a slender cone," AIAA Paper 2014-3110, 2014.
- (27) H. Bippes, "Basic Experiments on Transition in Three-Dimensional boundary Layers Dominated by Crossflow Instability," *Progress in Aerospace Sciences*, Vol. 35, No. 4, 1999, pp. 363-412.
- (28) Y. C. Kim andoE. J. Powers, "Digital bispectral analysis and

its applications to nonlinear wave interactions," IEEE Transactions on Plasma Science, Vol. 7, 1979, pp. 120-131.

(29) R. L. Kimmel and J. M. Kendall, "Nonlinear disturbances in a hypersonic laminar boundary layer," AIAA Paper 1991-0320, 1991.