Measurement of rheological properties of mixture of biphenylic and terphenylic liquid crystals

1. 緒言

液晶とは,棒状の液晶分子が一様な方向に配向しながらラ ンダムな重心位置を示す,固体と液体の両方の性質を併せ持 つ中間状態のことである.液晶の物理的性質である粘度や誘 電率は液晶分子の配向方向と相互作用することから, 流動や 電場といった外場によって液晶分子の配向方向を制御する ことで、液晶の物理的性質を制御可能である.この性質を利 用して,機能性流体としての液晶の力学的応用に注目が集ま っている. その中の一つに, 電場印加時に誘起される液晶流 動(背流)を利用した液晶アクチュエータ(1)がある.液晶に 電場を印加した際に、液晶の棒状分子は電場方向に回転する ことにより背流が発生する.この背流により、液晶に接する あるいは浸漬する物体表面にせん断応力が働き,物体が駆動 する.物体表面に働くせん断応力は液晶の粘度特性に強く依 存することから,液晶の背流による駆動を応用した力学的液 晶デバイスの駆動特性は使用する液晶材料の粘度特性に強 く依存する

図 1(a),(b)にそれぞれビフェニル系液晶である 5CB(4-n-4'pentylcyanobiphenyl)とテルフェニル系液晶である 5CB (4-n-4'-pentylcyanoterphenyl)の分子構造を示す.本研究では、5CB と 5CT およびこの 2 種類の混合物を対象とし,液晶分子の 剛直部分の長さ(ベンゼン環の数)の違いおよびそのモル混 合比が液晶相転移温度と粘度特性に及ぼす影響について調 べる.

(a) 4-n-4'-pentylcyanobiphenyl (5CB)

(b) 4-n-4'-pentylcyanoterphenyl (5CT)

Fig.1 Structural formula of 5CB and 5CT

2. 実験方法

混合液晶の粘度測定に先立ち,混合物が液晶相を示す温度 範囲を調べる必要がある.液晶相転移温度の測定には DSC (DSC1:METTLER TOLEDO 製)を用いる.粘度特性の測 定には回転式粘度計(HAAKE MARSIII:Thermo Fisher Scientific 製)を用いる.図2に回転式粘度計の測定部の概 略を示す.測定部は2枚の円板(直径 60mm のチタン製)か らなり,上下円板間のギャップ h は 0.5mm である.液晶試 航空宇宙工学コース 流体工学研究室 1245037 岸下 正憲

料を円板間に充填し、上部円板が回転することで液晶試料に せん断流れが印加される.

先述のように、本研究では 5CB (分子量:249) と 5CT (分子量:325) をモル比n:1(n = 1,2,3,4,5)で混合した液晶材料を 用いる.規定のモル比において 5CB と 5CT の混合に際し、 液晶材料を 140℃で 30 分間攪拌した.また、5CB および 5CT はそれぞれ 24~35℃、131~240℃で液晶相を示す⁽²⁾⁽³⁾ことが 知られている.

Fig. 2 Schematic of experimental measurements

実験結果および考察

3.1 液晶相転移温度の測定

図3に各混合液晶のDSC測定結果を示す.図の横軸は温度T,縦軸は単位質量当たりの熱流Hである.昇温測定後に降温測定を連続して行った結果であり,昇温速度および降温速度はいずれも0.78℃/minである.いずれの混合比の場合においても,昇温時には2つの吸熱ピークが現れ,低温側ピークは結晶→液晶相転移温度,高温側ピークは液晶→等方相転移温度に相当する.高温時にはこれらの逆の相転移が発生し,それらは発熱ピークとして現れている.当然のことではあるが,これらの相転移温度は混合比によって変化する.

図4はDSC 測定結果において相転移温度の熱流ピークが シャープに現れた降温時の相転移温度を混合比に対して示 した相図である.結晶→液晶相転移温度および液晶→等方相 転移温度のいずれもnの増加に対して反比例的に低くなる. また、2 $\leq n \leq 5$ の範囲において、液晶相が発現する温度範囲 に顕著な違いは見られない.5CB単体の液晶発現温度範囲が 11℃であるのに対して、混合液相は約60℃の液晶発現温度範 囲を有している.また、n=5の場合の結晶→液晶相転移温度 は12℃であり、5CB単体の結晶→液晶相転移温度である24℃ を下回る.

Fig.3 DSC measurement of liquid crystal mixtures

Fig.4 Phase diagram of liquid crystal mixtures

3.2 粘度特性の測定

図 5 に各混合液晶における粘度 η のせん断速度依存性を示 す.なお、測定温度は図 3 における各液晶材料が液晶相を発 現する温度範囲の中央値とし、5CB、5CT はそれぞれ 29°C、 184°C、各混合液晶はそれぞれ 115°C、85°C、64°C、57°Cおよ び 45°Cである.図よりいずれの混合液晶においても、粘度は せん断速度の増加とともに減少し、 $\dot{y} \gtrsim 40$ で一定値に至る. 単純せん断流れ中で棒状の液晶分子は流動方向に配向する 性質がある.本研究では、図 2 に示した円板間に液晶を充填 する過程で、円板中心から放射状流れが生じており、壁面に おける分子配向方向は放射状であると推測される.すなわち、 せん断速度の増加により、放射状方向の分子配向状態から流 動方向の分子配向状態への遷移が起こり、結果として粘度が 低下したと考えられる.また図より、低・高せん断速度のい ずれにおいても、nの増加に対して粘度は増加した.

3.3 内部構造の SALS (小角光散乱) 測定

せん断速度印加時における混合液晶の内部構造の変化を 小角光散乱装置(Rheo-SALS: Anton Paar 製)を用いて測定 した. $\dot{\gamma}$ =0,5,100における混合液晶n = 1の場合の SALS 測定 の結果をそれぞれ図 6(a)(b)(c)に示す.なお、入射光および検 出光の偏光方向は流動方向に平行とした.図の散乱像におい て x 軸方向は流動方向に対して垂直方向、y 軸方向は流動方 向を示しており、図中央の暗点はビームストッパーである. 図 6(a)より $\dot{\gamma}$ = 0 の場合、x 方向の散乱が支配的となり、円 板半径方向、すなわち放射状の分子配向場が形成されている. $\dot{\gamma}$ = 5 の場合(図 6(b))、x 方向への散乱光を維持しながら、 y 方向への強い散乱光が確認できるため、流動により円板中 心近傍の分子が流動方向に配向されたと考えられる. さらに せん断速度の高い $\dot{\gamma} = 100$ (図 6(c))では, x 方向の散乱光は ほとんど見られず, y 方向の散乱光のみが確認できる. すな わち, 円板間の全域で分子は流動方向に配向していると推察 される.

Fig.5 Effect of shear rate on the viscosities of mixtures

Fig.6 Scattering images of $\dot{\gamma} = 0,5,100$

4. 結言

本研究では、ビフェニル系液晶である 5CB とテルフェニ ル系液晶である 5CT の混合液晶についてモル混合比が液晶 相転移温度および粘度特性に及ぼす影響を明らかにした.以 下に得られた結果を示す.

・混合液晶では、相転移温度は混合比によって変化し、結晶 →液晶相転移温度、液晶→等方相転移温度のいずれにおいて もnの増加に対して反比例的に低くなる.また2 $\leq n \leq 5$ では液晶相が発現する温度範囲に顕著な違いは見られない. ・混合液晶の粘度はせん断速度の増加とともに減少し一定値 に至る.低・高せん断速度のいずれにおいても、nの増加に 対して粘度は増加した.また、せん断速度の増加により放射 状方向の分子配向から、流動方向の分子配向へ遷移した.

文献

- (1) 蝶野成臣, 辻知宏, "液晶駆動型マイクロアクチュエー タの開発 第1報, 流動の発生とメカニズム", 日本機 械学会論文集 B 編, Vol.72, No.715(2006),pp.656-661.
- (2) S. Pestov (2003), SpringerMaterials, Subvolume A · 2.1.1:26 -225
- (3) S. Pestov (2003), Springer Materials, 2.1.3:1519 2010