Separation Control of Flow Around Aerofoil with Porous Materials

航空宇宙工学コース

1. 緒言

航空機には離着陸時に主翼の高揚力装置を展開させ翼面 積の増加に加えてキャンバーの増加によって低速度での飛 行時に必要な揚力を得る.これらの性能が向上すればより低 速度での離着陸が可能になり滑走距離の短縮等,より安全な 離着陸に繋がる.高揚力装置の性能向上の手段の一つにフラ ップ角を大きくするという方法があるが、フラップ角を大き くするとフラップ上面で剥離してしまうため、その実現には プラップ上面に発生する剥離を抑制する必要がある.

剥離制御の方法の一つとして,境界層の一様な吸い込みに よって境界層厚さの成長を抑える方法がある.

本研究では、多孔質材と呼ばれる、無数の細孔を持ち通気 性に優れた材質に着目した.通気性により平板の表面に取り 付けた多孔質周りの気流に対して、境界層の吸い込み効果が あることが参考文献⁽¹⁾で検証されている.

本研究では多孔質材を翼型表面の剥離点近傍に埋め込ん で風洞実験を行い、フラップ等の翼型での剥離制御に効果的 がどうか検証することを研究の目的とする.

本研究で使用した風洞を図1に示す.風洞は図1に示すように吹き出し口が1m×1mの開放型風洞である.さらに風洞 主流乱れを抑えるため,吹き出し口の下流に風洞壁を設置している.風洞壁を図2に示す.

Fig.1 Wind tunnel (Side view).

Fig.2 Wind tunnel wall.

航空エンジン超音速流研究室 1245047 山崎 皓平

2. 多孔質材取り付け溝及び静圧測定孔付き試験翼の作成

2.1 概要

多孔質材取り付け溝及び静圧測定孔付き試験翼の作成のため,予備風洞実験及び数値計算を行った.実験と数値計算の結果から多孔質材を取り付ける位置を決定し,試験翼を作成した.

2.2 予備風洞実験

2.2.1 目的

多孔質の取り付けがない状態の NACA0012 翼型の気流が 剥離し始める迎角と剥離点を求め,実験で使用する風洞に合 わせた試験翼を設計することを目的に実験を行った.

2.2.2 実験方法

図 1 に示すように吹き出し口中央で(X,Z)=(0,0)[m]となる 座標軸 X と Z, 図 2 の手前側の風洞壁側面で Y=0 となる座 標軸 Y を設定した. (X,Y,Z)=(0,0.5,0.35) [m]に L 字ピトー管 を設置し,主流の全圧p_t[Pa]と静圧p_s[Pa]を計測し,その差か ら動圧q[Pa]を求め,風洞内の主流速度を導出し, 10m/s と した.

測定対象の試験翼は翼弦長 140mm とした.実験に使用した試験翼と静圧測定孔(以下「圧力孔」と記述)の加工位置の模式図を図3に示す.

Fig.3 .Test wing(Top: overview, Bottom: front view).

また翼幅 1500mm の試験翼を使用したため,風洞測定部の 横幅 1000mm の範囲に対応させるため,試験翼が風洞壁を貫 通するように設置し,貫通によって風洞壁にできた穴を塞い で実験を行った.

図3に示すように、圧力孔は前縁からの距離と翼弦長の比 x/c[-]が0から0.9の間に加工しており、x/c=0の圧力孔を中 心に主流方向に対して斜めに配置して、各孔同士の上部を流 れる気流の干渉を避けている.

(X,Z)=(0.5,0)[m]に試験翼翼弦中心を設定した. さらに Y=0.5 に x/c=0の圧力孔がくるように設置した.

圧力の計測には Scanivalve 社の微差圧計 DSA3217/16x を 用い、サンプリング周期 0.5s, 計測時間 10s で 20 個のデータ を取得した. その平均値をその点での静圧p[Pa]とし,以下の式(1)から圧力係数*C_p*を求めた.

$$Cp = \frac{p - p_s}{q} \tag{1}$$

迎角を以下αと記述する.

先行研究⁽²⁾より, $\alpha = 11^{\circ}$ から $\alpha = 13^{\circ}$ の間で剥離が始まることが分かったため, $\alpha = 11^{\circ}, 12^{\circ}, 13^{\circ}$ の計測を行った.

2.2.3 実験結果と考察

図 4 に α =11°, 図 5 に α =12°, 図 6 に α =13°の計測結果 (C_p 線図)を示す.ただ圧力孔の欠損などにより,

x/c=0.15, x/c=0.75, x/c=0.8 については,正確な値が計測で きかったため,前後の計測点の計測値の平均値を算出して 示す.

図4から図6の負圧面側に注目すると、図6の x/c=0.1 以降から C_p 値の変動が見られなくなった.これは剥離が発生しており、負圧の減少、すなわち揚力が減少していることを示している.従って、 $\alpha = 13^{\circ}$ から剥離が発生していると考えられる.

また x/c=0.1 以降から変動が見られなくなっているため, x/c=0.05~0.1 の間に剥離点があると考えられる.

2.3 数値計算

2.3.1 目的

予備風洞実験よりα =13°で剥離することが分かり,より詳 細な剥離点を捉えることを目的に数値解析を行った.

2.3.2 計算方法と計算条件

解析ソフトウェアは OpenFOAM を用いた. OpenFOAM は

有限体積法を中心とした偏微分方程式ソルバー開発用のク ラスライブラリと、それによって作られたいくつかのソルバ ー及びツール群である.

計算モデルは, 翼弦長が 140mm の NACA0012 翼型とする. 本研究では計算コストを考慮して二次元モデルで計算を行った.計算領域は風洞の風洞壁寸法(計測領域)と同様に, 縦 1000mm, 横 1300mm に設定した.計算格子を図 7 に, モ デル付近を拡大した図を図 8 に示す. OpenFOAM の blockMesh と snappyHexMesh を用いて格子を作成した.総セ ル数は約 37 万点で,最小格子幅は 0.0001m である.

さらに予備風洞実験同様に主流速度 10m/s, またα =13°を 考慮した流速成分にすることで, 流れ方向を決定した.

ソルバーは定常非圧縮流れに適した simpleFoam を選択した. 乱流モデルを RANS(Reynolds-Averaged Navier-Stokes)の中でも翼周りにおける剥離予測に優れた k-ooSST モデルで計算を行った.

2.3.3 計算結果と考察

図9にX軸方向の速度分布を示す. コンターは-5m/s~15m/s まで示している.

Fig.9 Speed distribution (X-axis).

図9の速度が0m/s 未満になっている領域が剥離による逆 流領域になっていると考えられる.0m/s 未満になり始めた箇 所を拡大し、流線を示した図を図10に示す.

Fig.10 Enlarged view near separation.

図 10 の赤い丸印付近で流線が渦巻き逆流していることが 分かる.この印は前縁からX軸方向に 22.3mm (x/c=0.16)の 付近の位置である事が分かった.

2.4 多孔質材取り付け位置

予備風洞実験及び数値計算の結果から、剥離点が x/c=0.05~0.16付近で発生すると考えられる. そのため、今回 は多孔質材の取り付け位置を x/c=0.05~0.16まで取り付けら れるように、取り付け用の溝を設置した.

試験翼の翼部分は3Dプリンタによって作成した.図 11 に作成した試験翼を示す.

Fig.11 Test wing for mounting porous material.

3. 多孔質材取り付け溝及び静圧測定孔付き試験翼の翼面 静圧計測実験

3.1 実験概要

多孔質材の取り付けの有無, さらに孔の大きさが 3.1mm, 1.2mm, 0.5mm の3種類の大きさの異なる多孔質材を取り付 けた際の計4ケースの翼面静圧を計測した. それにより多孔 質材が翼周り流れに与える効果を評価した.

3.2 実験方法

2.2.2 節と同様の方法で風洞内の主流速度を導出し 10m/s に設定した.

(X,Z)=(0.5,0)[m]に試験翼翼弦中心を設定し,試験翼支柱が 風洞壁を貫通するように設置し,貫通によって風洞壁にでき た穴を塞いで実験を行った.

さらに圧力孔は前縁からの距離と翼弦長の比 x/c[-]が 0 から 0.8 の間に加工しており,主流方向に対して斜めに配置して,各孔同士上部を流れる気流の干渉を避けている.

試験翼には多孔質材を埋め込むための溝を設置しており, 多孔質材とその取り付け溝を埋めるブロックを実験ケース ごとに交換して実験を行った.

取り付け溝を埋めるブロックは, 試験翼の翼部分同様に3 Dプリンタで作成した.

多孔質材は,株式会社八幡ねじのウレタン製モルトフィル ターを使用した.使用した多孔質材とその孔の大きさを図 12 に示す.

圧力の計測には Scanivalve 社の微差圧計 DSA3217/16x を 用い,サンプリング周期 0.5s,計測時間 10s で 20 個のデータ を取得した.その平均値をその点での静圧*ps*[Pa]とし,式(1) から圧力係数*C_n*を求めた.

3.3 実験結果と考察

図 13 に多孔質材の取り付けの有無,さらに孔の大きさが 3.1mm, 1.2mm, 0.5mmの3種類の大きさの異なる多孔質材を取 り付けた際の計4ケースの計測結果(*C*p線図)を示す.

(Difference in hole size and presence or absence of porous material).

x/c=0.21,x/c=0.25 については圧力孔の欠損などにより、どの実験ケースにおいても同様の測定値を示すようになってしまい、正確な測定できなかったと考えれる、

また多孔質材取り付け溝をブロックによって埋めて実験 した場合(多孔質材なし)については、ブロックと翼面に微 小な溝ができてしまい、ブロック直後の後流に当たる x/c=0.18~0.2において急激な圧力係数の変動が確認されて おり、正確な翼面静圧を計測できなかったと考えられる.そ のため圧力係数比較には多孔質なしの条件として予備風洞 実験での結果を使用する.

また圧力孔の欠損などにより,予備風洞実験の x/c=0.15, x/c=0.75, x/c=0.8 は正確な値が計測できかったため,前後の 計測点の計測値の平均値を算出し, *C*p線図に示す.

図 14 に図 13 にあった多孔質材なし条件のデータを削除 し、予備風洞実験のデータを追加した*C*n線図示す.

(Added preliminary wind tunnel experiment results).

多孔質材の孔の大きさが 1.2mm と 0.5mm の場合について、多孔質材直後の x/c=0.18~0.2 付近において、多孔質材がない状態よりも C_p 値が小さくなっている.

これは多孔質材を取り付けたことによって、剥離を抑制 した結果,翼面に沿った気流になり、より大きな負圧が発 生したためだと考えられる.

ただ x/c=0.3 以降においては、多孔質材がない状態の C_p 値 との差が小さくなっており、多孔質材がない状態と同様に 剥離し、翼面に沿った気流になっていないと考えられる.

また孔の大きさが 3.1m の場合においては, C_p 値が最も大 きくなっている.これは孔が大きいため壁面摩擦が増加 し, 翼面を流れる気流が大きく乱れ,その結果翼面に働く 負圧が小さくなってしまったためだと考えられる. 4. 結言 本研究はフラップ等の翼上面に発生する剥離を抑制する 方法として,多孔質材の取り付けによる剥離制御を提案し, 風洞実験を行って,翼面静圧を計測し,圧力係数を求めるこ とで剥離制御効果を調査した.

その結果,多孔質材の孔の大きさによって剥離制御効果は 異なるが,翼負圧面側の圧力係数の減少すなわち負圧の増加 が多孔質材の後流で見られた.

以上の知見より,多孔質材を翼表面に取り付けることによって,翼表面の剥離制御に効果があったことが分かった.

また本研究では翼面に多孔質材を埋め込んで実験を行った.そのため多孔質材の吸い込んだ空気は翼に接していない 上面もしくは側面からわき出すと考えられる.

多孔質材の吸い込みとわき出し効果については、参考文献⁽³⁾ でも確認されている。

そのため、多孔質材を翼表面に埋め込むと吸い込みとわき 出しによって翼面近傍の気流に速度変化を与えているので はないかと推察される.

また多孔質材によって壁面摩擦の増加によって、乱流境界 層が発達していることも考えられ、その結果剥離を抑制した ことも推察される.

今後の展望としては多孔質材上部の流れの可視化や速度 分布を計測することで, 翼面に埋め込まれた多孔質材の効果 が正確に理解できるようになると考えられる.

文献

- Gyuzel R. Yakhina (2020), "Aerodynamic and acoustic investigation of the liner-type porous treatment for trailingedge of the flat plate.", AIAA AVIATION Forum,6-10.
- (2) 西山和樹(2020), "風洞の活用方法に関する研究", 高知工科大学卒業論文, 29.
- (3) 財)鉄道総合技術研究所 環境工学研究部(騒音解析研究室), "シミュレーションを用いた多孔質材貼付による空力音低減原理の解明",鉄道総研技術フォーラム2010.