ラズパイと AI で掌から人を識別する装置の設計と製作

Design and Fabrication of the human classification system from palm of the hand using Raspberry Pi hardware and AI methods

1245055 榊原 雅司 (プロセッサ回路の設計・制御研究室) (指導教員 綿森 道夫 准教授)

1. 概要

近年、人工知能という言葉をよく聞くようになった。特に、 インターネットやメディアにおいては聞く機会が日に日に増 え、それと共に人工知能の分野に興味が湧いてくるようにな った。近年、顔認証と指紋認証を用いた人の判別はよく見る ようになり、身近なものだとスマートフォンのロック解除に よく用いられている。私の所属している研究室はプロセッサ 回路の設計と制御を行っており、ラズベリーパイにカメラと 人工知能アルゴリズムを搭載し、撮影、学習から判定までを 行うことができる装置の開発を目的と決めた。目標として、 表1のパターンを分類することを目指す。

表 1. 分類パターン

番号	パターン
0	[何も映っていない]
1	[榊原]
2	[綿森先生]
3	[その他]

2. AI・ディープラーニングの理解

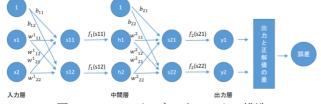


図 2.1 ニューラルネットワークの構造

図2.1にニューラルネットワークの計算の様子を示す。 データが入力層の x_1 、 x_2 に入ってくると、それらの値に重み を掛け合わせた和 s_{11} 、 s_{12} に活性化関数 f_1 を与えた値を h_1 、 h_2 に出力する。そして、先ほど計算した s_{11} 、 s_{12} の値を入力とし て重みを掛け合わせて活性化関数 f_2 を与えて最終的な出力層 $のy_1$ 、 y_2 に出力する。このように入力値と重みを積和演算し ていき、出力を予想していく。さらに、出力値と正解の値を 比較して、その誤差を求める。学習を重ねるにつれ、誤差が 小さくなるようにbとwの係数(重み)を変化させていく。これ がニューラルネットワークの行っている一連の計算処理であ る。他にも画像処理の CNN や RNN についても考察した。

3. 手のひらの識別に挑戦

図 3.2 撮影の様子

図 3.1 のようにガイド線を設けて、その線に沿って図 3.2 の ように手を撮影して、データの収集を行った。表1の番号0-2までの手を各400枚、番号3の画像を1200枚ほど撮影し、

学習データと検証データを 8:2 の割合で使用する。図 3.2 のよ うな conv2d(CNN)の 2 次元畳み込み層を用いて Tensorflow で ニューラルネットワークの構造を構築し、学習を行った。

```
model = keras.Sequential(
                   keras.layers.Conv2D(16, 3, padding='same', activation='relu'),
keras.layers.MaxPool2D(pool_size=(2, 2)),
keras.layers.Conv2D(64, 3, padding='same', activation='relu'),
keras.layers.MaxPool2D(pool_size=(2, 2)),
keras.layers.Flatten(),
keras.layers.Dropout(8.5),
                    keras.layers.Dense(4, activation='softmax'),
         ]
)
```

図 3.2 ニューラルネットワークの構造

生成された学習モデルと検証データを用いて、正答率を求 めると、約0.65となった。さらに判定精度を向上させるべく、 判定過程を図 3.4 から図 3.5 のように工夫した。出力層の 4 ノードに出力された値から SortmaxCrossEntropy 関数を用 いて、それぞれの値が 0~1 の合計 1 になるような確からしさ を出し、最も大きい値の番号を判定結果としていたが、判定 結果が連続して同じ判定であり、さらにその確からしさの値 が設定した閾値を超えた場合のみ、判定結果を表示するよう にすることで、判定の精度を向上させることができた。

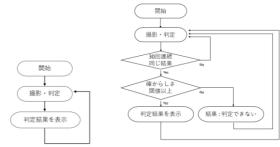


図 3.4 元のプロセス

図 3.5 工夫後のプロセス

4. 最終作品の構築

最終作品の外観と判定の様子を図4.1と図4.2に示す。装置 の中に手を入れると、リアルタイムで手の判定を行うことが できるようになっている。

図 4.2 判定の様子

5. 結論

手のひらを人の判定することができた。自分なりにニュー ラルネットワークの構造や分類パターン、判定プロセスなど をアレンジしていくことで、精度をより向上させることもで きた。Raspberry Pi の VNC サーバー機能を用いることで、遠 隔で判定結果を見ることができたり、ラズベリーパイ自体は 安価なので人認識の装置を低コストで実現することができる と考えられる。