フレキシブルな色素増感太陽電池に応用する ZnO ナノロッド電極の作成と評価

Synthesis and characterization of ZnO nanorods as electrodes

applying for flexible dye-sensitized solar cells

1245064 森本 雅也 (光・エネルギー研究室) (指導教員 李 朝陽 教授)

研究背景と目的

色素増感太陽電池は光透過性をもたせることが可能である ため、窓や曲面、衣類に取り付けられ、シリコン型太陽電池 にはない応用が可能である。プラスチックやフィルムを基板 とした DSSC の変換効率は、8%が世界最高水準と言われてい る。[1]シリコン太陽電池の26%と比較すれば、低い値である。 [2]。本研究では、ZnO ナノロッドのシード層を作るため、PEN 基板上に導電膜の成膜を行った。その後、CBD(化学浴析出) 法によりZnOナノロッドを合成した。ZnOナノロッド電極は、 ナノ構造を形成するため、高い配向性を持ち、長く表面積の 大きい電極が作成出来る。また、CBD法は低温で電極を合成 出来るため、フレキシブル化に適した合成方法と言える。

本研究では DSSC のフレキシブル化のため、PEN 基板上に 高い配向性、高い結晶性を持つ ZnO ナノロッドの合成を目指 す。また、色素吸着面積の増加のため、表面積が大きく長い ZnO ナノロッドを成長させ、DSSC を試作し変換効率の向上 を目指す。

2. 実験方法

RF マグネトロンスパッタリング法により、PEN 基板上に ZnO に Ga をドーピングした GZO (ZnO-Ga₂O₃(Ga:5at%))を室 温で 500nm 成膜した。

表1に CBD 法の条件を示す。GZO/PEN 基板を ZnO(NO₃)₂・ 6H₂O と C₆H₁₂N₄ (HMTA) をモル比 2:1 で混合した水溶液中に 浸す。その後、95℃に温めて反応させ、基板表面に ZnO ナノ ロッドを成長させた。表1の条件で5、15、25 時間 ZnO ナノ ロッドを成長させ、CBD 成長時間による依存性を評価した。 表1. ZnO ナノロッド合成の条件

条件基板	時間 (h)	温度 (℃)	溶液濃度 (%)	$Zn(NO_3)_2 \cdot 6H_2O$ (mol/L)	HMTA (mol/L)	mol比	超純水 (ml)
GZO/Glass	5						
	15	95	60	0.015	0.0075	2:1	200
GZO/PEN	25						

ZnO ナノロッド電極を用いて、DSSC の試作及び I-V 測定 を行った。対極には Au をコーティングした ITO 基板を用い た。また、擬似太陽光の有効照射面積は 1×1[cm²]、基準太陽 光 AM1.5G、温度 25[℃]、放射照度 100[mW/cm²]で測定した。

3. 実験結果

図 1 に GZO 薄膜の XRD の 2 θ パターンと SEM 像を示す。 GZO 薄膜にみられる 34.42°に近い値の強い回折ピークは、 ZnO の格子面(002)によるものだと確認できた。また、GZO の 均一な成膜を確認した。透過率は 75%、抵抗率は 8.288×10-⁴[Ω ・cm]と高透過率、低抵抗率を実現できた。

図 1. GZO 薄膜の XRD の 2 θ パターンと SEM 像 (表面図)

図2にGZO/PEN 基板上のZnOナノロッドのSEM像を示 す。表2にそのパラメータを示す。(※長さはGZO/Glass 基板 上の値)酸化亜鉛の六方晶ウルツ型構造を確認することが出 来た。CBD 成長時間の増加により、ZnOナノロッドの直径は 増加し、長く成長した。GZO/Glass 基板上では、ZnO ナノロ ッドが 25 時間で 5000nm 成長していることを確認した。

図 2. GZO/PEN 基板上の ZnO ナノロッドの SEM 像((1)表面 図、(2)45°から観察した図、(a) S1-5h、(b) S2-15h、(c) S3-25h) ま2. ZnO ナノロッドのパラメータ

$\gtrsim 2.$ ZIIO)) $\square \bigcirc \land \bigcirc $								
∕ 結果	直径	密度	長さ※					
サンプル	(nm)	(本/1µm ²)	(nm)					
S1-5h	65	141	1610					
S2-15h	77	101	2300					
S3-25h	163	27	5000					

図3にZnO ナノロッドの20パターンを示す。3つのZnO ナノロッドにみられる34.42°に近い値の強い回折ピークは、 ZnOの格子面(002)によるものだと確認できた。FWHMはS1-5h~S3-25hまで、0.146°、0.169°、0.154°となった。CBD成 長時間の増加により、ピーク強度は増加し、S3-25hが最も強 くなり、結晶性は向上した。

図4にI-V特性を示す。表3にその結果を示す。0Vから 0.2V間で電流密度が急激に減少した。CBD成長時間の増加に よる変換効率の上昇傾向がみられ、曲線因子は減少した。変 換効率は、PEN-15hの0.0111%が最も高い値となった。変換効 率と曲線因子が低くなったのは、電解液の漏れや基板抵抗に よる並列抵抗と直列抵抗が影響していると考えられる。

丰 2 L V 測定の約

表 3. I-V 測定の結果

結果 サンプル	短絡電流密度Jsc [mA/cm ²]	開放電圧Voc [V]	曲線因子FF	変換効率 [%]
S1-5h	0.031	0.637	0.151	0.0029
S2-15h	0.239	0.516	0.089	0.0111
S3-25h	0.242	0.662	0.060	0.0097

4. まとめ

PEN 基板上に高透過率、低抵抗率な GZO 薄膜を成膜できた。また、結晶性の高い ZnO ナノロッドを長く成長出来た。 PEN 基板上の ZnO ナノロッド電極を用いて、DSSC を作製できた。最高変換効率は、0.0111%となった。DSSC の並列抵抗や直列抵抗を改善すれば、変換効率向上の可能性は見込める。

5. 参考文献

[1] 室温プロセスによるフィルム型色素増感太陽電池 | 積水化学工
業株式会社. https://www.sekisui.co.jp/news/2017/1302064_29186.html
[2] 株式会社カネカ | 国立研究開発法人新エネルギー・産業技術総合
開発機構. https://www.nedo.go.jp/news/press/AA5_100635.html