卒業論文要旨

磁気浮上を用いた材料試験装置の制御

Control of material testing and equipment using magnetic levitation

システム工学群

機械・航空システム制御研究室 1

1230350 中村 響

1. 緒言

近年,磁気軸受,磁気浮上式鉄道,ベアリングレスモータなど 広い分野で大きさや仕組みが違う磁気浮上技術を用いた機 器が使われている.その理由としては,磁気浮上技術を用いる ことにより,機械的摩擦がなくなるため,潤滑油が不要となり, メンテナンスにかかるコストが大幅に削減できるからであ る.その他の用途として,磁気浮上技術を引張試験に応用した ものが提案されている⁽¹⁾⁽²⁾.磁気機構を用いることにより,非 接触で試験片を支持できるため,液体中などの環境での試験 が容易になる.しかし,この方法は,磁気浮上機構は試験片の下 方だけを非接触支持する機構であり,試験片の上方は機械的 に接触しており,真空中などの試験を行うことが難しい.

この問題を解決するために,試験片を完全に非接触浮上さ せた非接触引張試験装置(MLTTD)を提案する.真空,腐食性 液体,腐食性ガスなどの特殊環境中に,試験片や浮上に必要な 最小限の機構だけを設置するため,特殊環境を保持するスペ ースが少なくなり,材料試験が容易になる.また,磁気浮上装置 の浮上機構を工夫することにより,引張試験だけではなく 種々の応力試験に適用できる.今回は,提案する非接触引張試 験装置の構造と動作原理を説明し,浮上のシミュレーション を行い,浮上実験と引張実験を行う.

2. 磁気浮上引張試験装置(MLTTD)の構造と原理

提案された磁気浮上引張試験装置(MLTTD)の構造を図1 に示し,MLTTDの主要コンポーネントを表1に示す.図1と 表1に示すように,上部 EM と呼ばれる2つの EM をフレー ムワークの上部に固定し,下部 EM と呼ばれる1つの EM を ロードセルによってフレームワークの下部に固定する3つ の EM の電流は,3つのコントローラーによって個別に制御さ れる.MLTTDの中央にある浮上物体は,2つの上部フロータ ー,1つの上部ボルト,2つの固定具,2つの下部フローター,お よび1つの下部ボルトで構成されている.

MLTTD の動作原理は、まず、電流が個別に制御される 2 つ の上部 EM(電磁石)に電流が流れることにより、電磁力が発生 し、2 つの上部フローターを引きつけることで、浮上物体が浮 上する、次に、2 つの渦電流センサーは、2 つの上部フローター の垂直方向の位置をコントローラーに送る.コントローラー は、2 つの上部 EM の電流を調整し、上部フローターと固定具 を特定の高さに維持する、浮上安定後、底部の EM が帯電し、底 部のフローターに張力が発生する.底部の EM の電流が徐々 に増加することにより、底部 EM から発生する張力が大きく なるが、上部フローターと固定具は試験片が破壊されるまで 元の位置に維持される.ロードセルは引張力を測定して記録 する。

Fig.1 Structure of MLTTD

Table 1 Main components MLTTD			
No	Name	Material	Number
1	Top EM core	SS400	2
2	Coil winding	UEW Copper coil	6
3	Aluminum Profile	A6063	3
4	Bottom EM core	SS400	2
5	Load cell	NEC 9E01-L35	1
6	Eddy current	SENTEC HA-80R	2
	sensor		
7	Top floator	SS400	2
8	Fixture	A6063	2
9	Specimen	SUS304	1
10	Bottom floator	SS400	2

3. モデリングとシミュレーション

3.1 モデル化

今回は、PDコントローラーを使用する. 適切な PD ゲイン を得るためには、電磁石の磁力モデルを求め、それをもと にシステム線形モデルを得る必要がある. 磁力モデルは CAD モデルに基づいて、FEM 解析ソフトウェア(J-Mag)を 用いて、磁力を計算することができる. 得られた磁力を電 流とエアギャップ、より

3.2 シミュレーション

シミュレーションでは、LQR 法で PD ゲインを調整し、シ ステムが良好なダイナミクス性能を発揮する PD ゲインを 見つける.図 2 にエアギャップのステップ応答のシミュ レーション結果を示す. P ゲインは 700 Am⁻¹, D ゲインは 10 Asm⁻¹に設定した.エアギャップが 2.0mm でコイルに 0.86A の電流を印加した状態を平衡状態としている. 1秒 後に重心変位方向に 0.1mm のステップ外乱を入力した. シミュレーション時のダイナミクス性能の評価基準は、オ ーバーシュートと整定時間である.基本的に、PD ゲインは、 オーバーシュートをできるだけ小さくし、整定時間は短く した.

Fig. 2 Numerical simulation result of Air Gap

3.3 浮上実験

図3に、試験装置のモデルのパラメータを示す。U字型 電磁石への入力電流をi1, i2、円筒形電磁石への入力電流を i3とする。また、U字型電磁石の最下部と上部フローター の最上部との距離をz₁, z₂、浮上物体への引張負荷力をF_t とした。

図4に,エアギャップz1,z2のステップ応答の結果を示 す. P ゲインは, 2000 Am⁻¹, D ゲインは 6 Asm⁻¹に設定し た. LQR 法を用いて、シミュレーションでダイナミクス性 能が良いゲインを参考にチューニングを行い試作機で浮 上実験を行った。浮上実験の目的は、実験機のシステムの ダイナミクス性能を評価することである。0.3 秒後に重心 変位方向に 0.15mm のステップ外乱を入力し、その時のオ ーバーシュートと整定時間と定常誤差の値で評価する。結 果、z1, z2 の定常誤差は、0.008mm、0.012mm と小さいので、 システムの定常性能は良い。整定時間は0.19秒となり短 い事が分かる.また、オーバーシュートは、0.01mmと大き い結果となった.この理由は、応答速度が速いと加速度が 大きいので,目標値より行き過ぎてしまい,オーバーシュ ートが大きくなるからである。しかし,引張試験は非常に 速い応答速度を必要とするため,ある程度のオーバーシュ ートは避けることはできない.

Fig.4 Air Gap in levitation experiment

4. 引張実験

3章では,良いダイナミクス性能を持つ PD ゲインを求めた. 更に,外乱に対して強いロバスト性を持たせたいので積分器 を追加して, PID コントローラーにする. 今回, 外乱は引張力 になる.引張実験の目的は、浮上物体に引張負荷力を加えた 際、浮上物体が落ちないように入力電流を制御し、エアギャ ップの定常誤差を小さくすることである。今回、PID 制御器 を用いて、浮上物体に引張負荷力を加えた際のU字型電磁石 への入力電流i1,i2,円筒形電磁石への入力電流i3とエアギャ ップz1, z2の応答を見た(図 5, 6, 7, 8)。図 6, 7 より、入力電流 i1, i2, i3は、放物線の形になっている。しかし、入力電流i1, i2 は、i3に比べて緩やかな変化である。これは、入力電流i1,i2 は,浮上物体の元々の重さがあり,装置の質量に比べて,負荷 力の変化が小さいからである.

図 8 より、エアギャップ平衡点 2.0mm からの変位量は、 0.015mm 以内だった。これは,積分器が引張力(外乱)に対し ての影響を低減しているからである.

Fig.7 Current i_3 in tensile experiments

Fig.8 Air Gap in tensile experiments

5 結言

本論文では、磁気浮上引張試験装置(MLTTD)という新しい 試験装置を提案した.これは、試験片を非接触で磁力によっ て引っ張ることができる装置である.また、浮上のシミュレ ーションは、良い定常特性を示し、浮上実験も安定して浮上 させることに成功した.実際の引張実験では、浮上物体に引 張力を与えた際、落下することなく安定して試験を行うこと ができた.今後は、曲げ、ねじり、圧縮などの他のタイプの荷 重を可能にする磁気浮上材料力学試験装置に応用したいと 考える.

参考文献

(1)多田直樹,西原亮一,真砂秀行, "永久磁石を用いた小型鉛フリーはんだ接合部の引張試験",台北,台湾,2012
年,pp.145-148

(2) 多田直樹,西原亮一,真砂秀行,"永久磁石を用いた小型鉛フリーはんだ接合部の引張試験",台北,台湾,2013年, pp. 186-189