A High-Order Accurate Computation of Compressible Navier-Stokes Equations using Direct Flux Reconstruction Method

知能機械工学コース

航空エンジン超音速流研究室 1255007 笠石 丈二

研究背景と目的

現在の航空機開発の現場では、格子の形状適合性が高く、 高次精度かつ計算時間が短い、CFD コードが求められる.形 状適合性に優れ、複雑形状まわりの格子生成が容易な非構造 格子法の中で、現在広く用いられている計算手法が有限体積 法である.有限体積法は様々な格子形状に対して保存則を厳 密に遵守することができ、計算コストも比較的低い.

しかし,有限体積法はセル境界面の物理量をセル外部のス テンシルから補間するため,いくつかの問題を持つ.一つは 空間精度が低いことである.セル境界面の物理量の補間精度 は隣接セルの品質に大きく依存する.そのため,隣接セルの 品質が悪い場合,定式通りの計算精度を得ることができない. もう一つの問題は並列化計算に適さないことである.有限体 積法での高次精度化には,セル外部のより多くのステンシル が必要となり,コンパクト性を失う.そのため,領域分割に よる並列化において通信コストが高くなり,並列化効率が下 がる.従って,有限体積法を用いて航空機まわりの流体計算 を行うことは複雑形状への適合性では優れるが,高次精度化 や並列化効率に欠点がある.そこで,様々な研究機関が高次 精度スキームの開発を進めている.

その中で,最も広く知られている非構造高次精度スキーム は不連続ガレルキン法⁽¹⁾(Discontinuous Galerkin method,以下 DG法)である.DG法は、セル内の物理量分布を基底関数で級 数展開し、セル境界面ではガウス求積法により数値流束を計 算する.DG法は積分型の保存則を解き、K 個の自由度から 2K-1次の空間精度を得る.自セルのみで計算が完結でき るためコンパクトな手法であり、隣接セルの品質に影響され ることなく、定式通りの計算精度を得ることができる.セル 内にK個の自由度を持つため計算コストは増加するが、並列 計算に向く.一セルあたり自由度の分だけデータ量が増加し、 時間積分に陰解法を用いる際、巨大な逆行列計算が必要とな るので、計算コストが著しく高いという欠点を持つ.

そこで、新たに高次精度で計算コストの削減が見込める手 法が Huynh によって考案された直接流束再構築法⁽²⁾(Direct Flux Reconstruction method,以下 DFR 法)である.DFR 法はセ ル内部に複数のデータ点(Solution Point 以下 SP)を持ち、SP での物理量からセル内部の流束分布を構築する.構築したセ ル内部の流束分布からセル境界での流束を求め、セル境界と SP での流束から計算領域全体で連続な流束分布を再構築す る.再構築された流束は不連続点が存在しないため、微分型 の保存則を解くことができる.DFR 法は K 個の SP から 2K-2 次の空間精度を得る.また、自セルと隣接セルのみの情報で 高次精度化が可能であり、コンパクトな手法である.

本研究では、航空機まわりの圧縮性流体計算に向けた第一 歩として、正弦波の移流問題を計算対象とした DFR 法のコ ード開発と精度検証を行う.さらに、Sodの衝撃波管問題⁽³⁾を 計算対象とし、2 次元オイラー方程式への拡張を行う.最後 に、平板境界層問題を計算対象とし、2次元圧縮性ナビエス トークス方程式への拡張を行う.

- 2. 数値計算法
- 2.1 正弦波の移流問題
 - 1次元線形移流方程式を考える.

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0.$$
(1)

計算領域をセル E_j ($j=1,2, \cdot \cdot \cdot$)に分割し,各セル内に K 個の SP を導入する.各セル内の SP の座標位置 $x_{j,k}$ ($k = 1, \cdot \cdot \cdot K$)での解を $u_{j,k}$ と表す.

$$(u_t)_{j,k} + (f_x)_{j,k}.$$
 (2)

計算領域全体で連続な流束を再構築するには、セル境界 x_{i+1/2}で共通の流束値f^{com}を取る必要がある.

$$u^{L} = u_{j+\frac{1}{2}}^{L} = u_{j,k} \Phi_{k}(1), \qquad \Phi_{k}(1) = \prod_{\substack{l=0, l \neq k \\ \kappa}}^{K} \frac{1 - \xi_{l}}{\xi_{k} - \xi_{l}} \qquad (3)$$

$$u^{R} = u^{R}_{j-1/2} = u_{j,k} \Phi_{k}(-1), \qquad \Phi_{k}(-1) = \prod_{l=0, l \neq k}^{N} \frac{-1 - \xi_{l}}{\xi_{k} - \xi_{l}}$$
(4)

$$f^{com} = \frac{1}{2}c(u^L + u^R) - \frac{1}{2}|c|(u^R - u^L)$$
(5)

次に流束関数を再構築する.線形移流方程式を考えているので,SPとセル境界での流束は保存量から簡単に求まる.

$$f_{j,k} = cu_{j,k}.$$
 (6)
式(5)より,両端のセル境界での流束を求める.

$$f_{j,0} = f_{j-\frac{1}{2}}^{com}, \quad f_{j,K+1} = f_{j+\frac{1}{2}}^{com}.$$
 (7)

式(3)と同様の方法でセル境界でも連続な連続流束関数 (F_ξ)_{ik}を再構築する.

$$(F_{\xi})_{j,k} = \sum_{k=0}^{K+1} f_{j,k} \Phi_k(\xi), \qquad \Phi_k(\xi) = \prod_{l=0, l \neq k}^{K+1} \frac{\xi - \xi_l}{\xi_k - \xi_l} \qquad (8)$$

計算座標系(ξ座標)から物理座標系(x座標)に座標変換すると SPにおける流束の空間微分は、

$$(F_x)_{j,k} = \frac{2}{h_j} (F_{\xi})_{j,k}.$$
 (9)

ただし、 h_j は格子幅を表す. 従って、式(2)は半離散式で表せ、

$$\frac{du_{j,k}}{dt} = -\left(F_x\right)_{j,k}.$$
(10)

時間積分により保存量を更新する.本研究では SP に K=3 の ガウス点,時間積分法に TVD3 次ルンゲクッタ法⁽⁴⁾を用いた.

2.2 Sod の衝撃波管問題

2次元オイラー方程式を考える.

$$\frac{\partial \boldsymbol{Q}}{\partial t} + \frac{\partial \boldsymbol{E}}{\partial x} + \frac{\partial \boldsymbol{F}}{\partial y} = 0.$$
(11)

ここで、Qは保存量ベクトル、EとFは対流流束ベクトルを

表す.

$$\boldsymbol{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix}, \quad \boldsymbol{E} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ (E + p)u \end{pmatrix}, \quad \boldsymbol{F} = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ (E + p)v \end{pmatrix}. (12)$$

計算領域をセル $E_{i,j}$ (*i*=1,2, ・・・,*j*=1,2, ・・・)に分割し, 各セル内に $K \times K$ 個の SP を導入する. セル $E_{i,j}$ における SP の 位置 ($x_{i,k}, y_{j,l}$), ($k = 1, \cdot \cdot \cdot K$), ($l = 1, \cdot \cdot \cdot K$)での保存 量ベクトルを $Q_{i,i,k,l}$ と表す.

$$(\boldsymbol{Q}_t)_{i,j,kl} + (\boldsymbol{E}_x)_{i,j,k,l} + (\boldsymbol{F}_y)_{i,j,k,l} = 0.$$
(13)

計算領域全体で連続な対流流束を再構築するには、x方向の セル境界 $x_{i+1/2}$, y方向のセル境界 $y_{j+1/2}$ で、それぞれ共通の 対流流束値 e^{com} , f^{com} を取る必要がある. 共通の対流流束値 は、セル境界の保存量 $q_{L_{j,l}}, q_{R_{j,l}}, q_{U_{i,k}}, q_{D_{i,k}}$ より、Roe 法⁽⁵⁾を用 いて求めと、

$$\boldsymbol{q}_{L_{i,j,l}} = \sum_{k=1}^{K} \boldsymbol{Q}_{i-1,j,k,l} \Phi_{k}(1), \qquad \Phi_{k}(1) = \prod_{k=1,k\neq l}^{K} \frac{1-\xi_{k}}{\xi_{l}-\xi_{k}}, \quad (14)$$
$$\boldsymbol{q}_{R_{l,j,l}} = \sum_{k=1}^{K} \boldsymbol{Q}_{i,j,k,l} \Phi_{k}(-1), \qquad \Phi_{k}(-1) = \prod_{k=1,k\neq l}^{K} \frac{-1-\xi_{k}}{\xi_{l}-\xi_{k}}, \quad (15)$$
$$\boldsymbol{q}_{U_{i,j,k}} = \sum_{k=1}^{K} \boldsymbol{Q}_{i,j-1,k,l} \Phi_{l}(1), \qquad \Phi_{l}(1) = \prod_{l=1,l\neq k}^{K} \frac{1-\eta_{l}}{\eta_{k}-\eta_{l}}, \quad (16)$$

$$\boldsymbol{q}_{D_{i,j,k}} = \sum_{k=1}^{k} \boldsymbol{Q}_{i,j,k,l} \boldsymbol{\phi}_l(-1), \qquad \boldsymbol{\phi}_l(-1) = \prod_{l=1,l \neq k}^{l} \frac{-1 - \eta_l}{\eta_k - \eta_l} \quad (17)$$

ただし、添え字Lは左側セル境界、添え字Rは右側セル境界、 添え字Uは上側セル境界、添え字Dは下側セル境界を意味す る.得られた共通対流流束を以下のように設定する.

$$\boldsymbol{e}_{i,j,0,l} = \boldsymbol{e}_{i-1/2,j,l}^{com}, \quad \boldsymbol{e}_{i,j,K+1,l} = \boldsymbol{e}_{i+1/2,j,l}^{com},$$
 (18)

$$f_{i,j,k,0} = f_{i,j-1/2,k}^{com}, \quad f_{i,j,k,K+1} = f_{i,j+1/2,k}^{com}.$$
 (19)

連続対流流束関数
$$E_{i,j,l}(\xi_{i,k}), F_{i,j,k}(\eta_{j,l})$$
を求める.
 $E_{i,j,l}(\xi_{i,k}) = \sum_{k=0}^{K+1} e_{i,j,k,l} \Phi_k(\xi), \Phi_k(\xi) = \prod_{l=0,l\neq k}^{K+1} \frac{\xi - \xi_l}{\xi_k - \xi_l}, (20)$
 $F_{i,j,k}(\eta_{j,l}) = \sum_{k=0}^{K+1} f_{i,j,k,l} \Phi_l(\eta), \Phi_l(\eta) = \prod_{k=0,k\neq l}^{K+1} \frac{\eta - \eta_k}{\eta_l - \eta_k}. (21)$

ただし, $e_{i,j,k,l}$, $f_{i,j,k,l}$ は SP での対流流束値である. 連続対流流束関数 $E_{i,j,l}(\xi_{i,k})$, $F_{i,j,k}(\eta_{j,l})$ から SP での対流流 束の空間微分 $(e_{\xi})_{i,j,k,l}$, $(f_{\eta})_{i,j,k}$ を求める.

$$(f_{\eta})_{i,j,k,l} = (F_{i,j,k})_{\eta} (\eta_{j,l}).$$

$$(23)$$

計算座標系(ξ – η座標)から物理座標系(x – y座標)に座標変 換すると SP における流束の空間微分は,

$$(\boldsymbol{e}_{x})_{i,j,k,l} = \frac{2}{dx} (\boldsymbol{e}_{\xi})_{i,j,k,l}, \qquad (24)$$

$$\left(f_{y}\right)_{i,j,k,l} = \frac{2}{dy} \left(f_{\eta}\right)_{i,j,k,l}.$$
(25)

ただし, *dx*:*x*方向の格子幅, *dy*:*y*方向の格子幅とする. 従って, 式(13)は以下のような半離散式で表すことができる.

$$\frac{d\boldsymbol{Q}_{i,j,k,l}}{dt} = -(\boldsymbol{e}_x)_{i,j,k,l} - (\boldsymbol{f}_y)_{i,j,k,l}.$$
(26)

式(26)に対して、時間積分を行うことで保存量を時間更新する.

2.3 平板境界層問題

2次元圧縮性ナビエストークス方程式を考える.

$$\frac{\partial \boldsymbol{Q}}{\partial t} + \frac{\partial \boldsymbol{E}}{\partial x} + \frac{\partial \boldsymbol{F}}{\partial y} - \frac{\partial \boldsymbol{E}_{v}}{\partial x} - \frac{\partial \boldsymbol{F}_{v}}{\partial y} = 0.$$
(25)

ここで、Qは保存量ベクトル、E、Fは対流流束ベクトル、 E_{ν} 、 F_{ν} は粘性流束ベクトルを表す.

$$\boldsymbol{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix}, \boldsymbol{E} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ (E+p)u \end{pmatrix}, \boldsymbol{F} = \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ (E+p)v \end{pmatrix}, \quad (28)$$

$$\boldsymbol{E}_{\boldsymbol{\nu}} = \begin{pmatrix} \boldsymbol{\tau}_{xx} \\ \boldsymbol{\tau}_{xy} \\ \boldsymbol{\tau}_{xx} + \boldsymbol{\nu}\boldsymbol{\tau}_{xy} - \boldsymbol{q}_{x} \end{pmatrix}, \boldsymbol{F}_{\boldsymbol{\nu}} = \begin{pmatrix} \boldsymbol{\tau}_{yx} \\ \boldsymbol{\tau}_{yy} \\ \boldsymbol{\tau}_{yy} \\ \boldsymbol{\tau}_{yx} + \boldsymbol{\nu}\boldsymbol{\tau}_{yy} - \boldsymbol{q}_{y} \end{pmatrix}.$$
 (29)

ただし、 τ は粘性応力、qは熱流束を示す.粘性応力 τ と熱流 束qは Stokes の定理と Fourier の法則を用いて

$$\tau_{xx} = \frac{2}{3}\mu \left(2\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right), \qquad \tau_{yy} = \frac{2}{3}\mu \left(2\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x} \right) \tag{30}$$

$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right), \tag{31}$$

$$q_x = -\kappa \frac{\partial I}{\partial x}, \quad q_y = -\kappa \frac{\partial I}{\partial y}, \tag{32}$$

ここでκは熱伝導係数, Τは温度を示す.

計算領域をセル $E_{i,j}$ (*i*=1,2, ・・・,*j*=1,2, ・・・)に分割し, 各セル内に $K \times K$ 個の SP を導入する. セル $E_{i,j}$ における SP の 位置 ($x_{i,k}, y_{j,l}$), ($k = 1, \cdot \cdot \cdot K$), ($l = 1, \cdot \cdot \cdot K$)での保存 量ベクトルを $Q_{i,j,k,l}$ と表す.

$$(\boldsymbol{Q}_{t})_{i,j,k,l} + (\boldsymbol{E}_{x})_{i,j,k,l} + (\boldsymbol{F}_{y})_{i,j,k,l} - (\boldsymbol{E}_{\boldsymbol{v}_{x}})_{i,j,k,l} - (\boldsymbol{F}_{\boldsymbol{v}_{y}})_{i,j,k,l} = 0.$$
(33)

ただし、対流流束の1階微分 $(E_x)_{i,j,k,l}$ 、 $(F_y)_{i,j,k,l}$ の離散化は 前節で示したため、今節は粘性流束 $(E_{v_x})_{i,j,k,l}$ 、 $(F_{v_y})_{i,j,k,l}$ の離散化を示す.

まず, セル $E_{i,j}$ での代表移流速度 $U_{i,j}$, $V_{i,j}$ を SP での移流速 度 $u_{i,j,k,l}$, $v_{i,j,k,l}$ からガウス求積を用いて求める.

$$U_{i,j} = \frac{1}{K \times K} \left(\sum_{l=1}^{K} u_{\xi}(l) + \sum_{\substack{k=1\\K}}^{K} u_{\eta}(k) \right),$$
(34)

$$V_{i,j} = \frac{1}{K \times K} \left(\sum_{l=1}^{K} v_{\xi}(l) + \sum_{k=1}^{K} v_{\eta}(k) \right),$$
(35)

$$u_{\xi}(l) = \sum_{\substack{l=1\\K}} w_l u_{i,j,k,l}, \qquad u_{\eta}(k) = \sum_{\substack{k=1\\K}} w_k u_{i,j,k,l}$$
(36)

$$v_{\xi}(l) = \sum_{l=1}^{l} w_l v_{i,j,k,l}, \qquad v_{\eta}(k) = \sum_{k=1}^{l} w_k v_{i,j,k,l}$$
(37)

代表移流速度*U_{i,j}、V_{i,j}*から中心差分法を用いて代表移流速 度の1階微分を求める.

$$\left(\frac{\partial U}{\partial x}\right)_{i,j} = \frac{2}{dx} \frac{U_{i+1,j} - U_{i-1,j}}{2d\xi},\tag{38}$$

$$\left(\frac{\partial V}{\partial x}\right)_{i,j} = \frac{2}{dx} \frac{V_{i+1,j} - V_{i-1,j}}{2d\xi},\tag{39}$$

$$\left(\frac{\partial U}{\partial y}\right)_{i,j} = \frac{2}{dy} \frac{U_{i,j+1} - U_{i,j-1}}{2d\eta},\tag{40}$$

$$\left(\frac{\partial V}{\partial y}\right)_{i,j} = \frac{2}{dy} \frac{V_{i,j+1} - V_{i,j-1}}{2d\eta}.$$
(41)

ただし、 $d\xi$: ξ 方向の格子幅、 $d\eta$: η 方向の格子幅とする.

代表移流速度の1階微分からセル $E_{i,j}$ での代表粘性流束ベクトル $E_{v_{i,j}}$ 、 $F_{v_{i,j}}$ を求め、ガウスの発散定理より、代表粘

性流束ベクトルの1階微分 $(\boldsymbol{E}_{\boldsymbol{v}_{\boldsymbol{x}}})_{ii}, (\boldsymbol{F}_{\boldsymbol{v}_{\boldsymbol{y}}})_{ii}$ を求める.

$$\left(\boldsymbol{E}_{\boldsymbol{v}_{\boldsymbol{X}}} \right)_{i,j} = \left(\boldsymbol{E}_{\boldsymbol{v}_{i+1,j}} - \boldsymbol{E}_{\boldsymbol{v}_{i-1,j}} \right) d\boldsymbol{y}, \tag{42}$$

$$\left(F_{\boldsymbol{v}_{y}} \right)_{i,j} = \left(F_{\boldsymbol{v}_{i,j+1}} - F_{\boldsymbol{v}_{i,j-1}} \right) dx.$$

$$(43)$$

代表粘性流束ベクトルの1階微分をセル*E_{i,j}*内の全SPでの粘 性流束ベクトルの1階微分とする.

$$(\boldsymbol{E}_{\boldsymbol{\chi}})_{i,j,k,l} = \left(\boldsymbol{E}_{\boldsymbol{\nu}_{\boldsymbol{\chi}}}\right)_{i,j}, \qquad \left(\boldsymbol{F}_{\boldsymbol{\nu}_{\boldsymbol{y}}}\right)_{i,j,k,l} = \left(\boldsymbol{F}_{\boldsymbol{\nu}_{\boldsymbol{y}}}\right)_{i,j}. \tag{44}$$

従って、式(33)は以下のような半離散式で表すことができる. dQiiki

$$\frac{\partial v_{i,j,k,k}}{\partial t} = -(E_{i,j,l})_x(x_{i,k}) - (F_{i,j,k})_y(y_{j,l}) + (E_{v_x})_{i,j} + (F_{v_y})_{i,j}.$$
(45)

式(45)に対して,時間積分を行うことで保存量を時間更新する.

3. 計算結果

3.1 1次元線形移流 DFR 法コードの精度検証

計算条件を表1のように設定する.図2に10000ステップ 後の計算結果を示す.黒線は厳密解との誤差を表している. 図3はステップ数10000,格子点数30点,60点,120点での局 所誤差の常用対数値から最小二乗法を用いて,近似直線を引 いたグラフである.赤線は4次精度DFR法,青線は5次精度 WENO法,緑線は2次精度有限体積法である.この直線の傾 きから定式通りの4次精度を得られたことを確認した.

Table1 Calculation condition

格子点数	50 点
計算領域(x方向)	[0,1]
境界条件	周期境界
初期条件	$u_{init} = \sin(2\pi x)$
移流速度	c = 1

Fig. 2 Computed of sine wave advection

3.2 Sod の衝撃波管問題の計算結果

計算条件を表 2 のように設定する. 図 4 に密度分布の計算 結果を示す. 紫線は厳密解, 緑線は計算結果, 黒破線は初期 条件である. ただし, 図 4 はy = 0.5位置でのx方向の断面図 である. 衝撃波はx = 0.75付近, 接触不連続面はx = 0.65付 近, 膨張波の先頭はx = 0.35付近まで進み, 3 種類の波が異 なる速度で進むことが確認できる.

しかし、衝撃波の背後で振動がわずかに見られる.また、 接触不連続面で位相誤差も発生している.格子点数を200点 としたため、位相誤差は小さく抑えられているが、格子点 数を減らすと誤差は大きくなる.接触不連続面で発生する 位相誤差を解決することも今後の課題である.

Table2 Calculation condition

rublez culculution condition	
格子点数	200×200 点
計算領域	$[0 \le x \le 1], [0 \le y \le 1]$
境界条件	自由境界
初期条件	$\begin{pmatrix} \rho_L \\ u_L \\ v_L \\ P_L \end{pmatrix} = \begin{pmatrix} 1.0 \\ 0.0 \\ 0.0 \\ 1.0 \end{pmatrix}, \begin{pmatrix} \rho_R \\ u_R \\ v_R \\ P_R \end{pmatrix} = \begin{pmatrix} 0.125 \\ 0.0 \\ 0.0 \\ 0.1 \end{pmatrix}$
クーラン数	0.1
時刻	0.14159

3.3 平板境界層問題の計算結果

計算条件を表 3 のように設定する. また, 下側の境界条件は, $0 \le x \le 1$ はすべりあり境界, $1 < x \le 4$ はすべりなし境界, 左側は流入境界, 上側と右側は流出境界とする. 初期条件から密度 $\rho[kg/m^3]$, 音速c[m/s], x方向の移流速度u[m/s], y方向の移流速度v[m/s], レイノルズ数Re[-]を求める.

$$\rho = \frac{M \times P}{T \times R} = \frac{0.029 \times 101300}{300 \times 8.314} = 1.178.$$
 (46)
分子量M = 0.029[kg/mol], 気体定数R = 8.314[J/(K mol)]と
する.

$$c = \sqrt{\frac{\gamma \times P}{\rho}} = \sqrt{\frac{1.4 \times 101300}{1.178}} = 346.97.$$
(47)
比熱比 $\gamma = 1.4[-]$ とする.

$$u = Ma \times c \times \cos\left(\frac{alpa \times \pi}{180}\right) \times \cos\left(\frac{beta \times \pi}{180}\right)$$
$$= 0.1 \times 346.97 \times \cos\left(\frac{0 \times \pi}{180}\right) \times \cos\left(\frac{0 \times \pi}{180}\right) = 34.7, \quad (48)$$

$$v = Ma \times c \times \sin\left(\frac{alpa \times \pi}{180}\right) \times \sin\left(\frac{beta \times \pi}{180}\right)$$
$$= 0.1 \times 346.97 \times \sin\left(\frac{0 \times \pi}{180}\right) \times \sin\left(\frac{0 \times \pi}{180}\right) = 0.$$
(49)
$$alpa = beta = 0 \succeq \pm \Im.$$

 $\operatorname{Re} = \frac{UL}{v} = \frac{34.7 \times 3.0}{0.1} = 1004.1$ (50)

代表長さL = 3.0[m], 粘性係数v = 0.1[Pa・s]とする.

図 5 はx = 1.0[m]付近での平板境界層問題の速度分布,図 6はx = 3.8[m]位置でのDFR法による平板境界層問題のブラ ジウス解⁽⁶⁾との比較である.図 5 から境界層が発生している 様子を確認した.図6からブラジウス解から大きく離れてし まっていることを確認した.理由として,定常解になるまで の壁面での数値振動が原因と考えられる.Sodの衝撃波管問 題でも発生したように数値振動の抑制は今後の課題である.

Table3 Calculation condition

rucite culturation condition	
格子点数	200×100 点
計算領域	$[0 \le x \le 4], \ [0 \le y \le 0.1]$
初期条件	圧力:P = 1013[hPa]
	温度:T = 300[K]
	マッハ数:Ma = 0.1[-]
クーラン数	0.01

文献

- Cockburn, B., and Shu, C-W., "TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws 2: General Framework", *Mathematics* of Computation, Vol. 52, pp. 411-435, 1989.
- (2) Huynh, H. T., "A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods", AIAA paper 2007-4079, 2007.
- (3) Sod, G. A., "A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws", *Journal of Computational Physics*, Vol. 27, pp. 1-31, 1978.
- (4) Gottlieb, S., and Shu, C. W., "Total Variation Diminishing Runge-Kutta Schemes", *Mathematics of Computational Physics*, Vol. 67, pp. 73-85, 1998.
- (5) Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes", *Journal of Computational Physics*, Vol. 43, pp. 357-372, 1981
- (6) Howarth, L., On the Solution of the Laminar Boundary Layer Equations. Proc. Roy. Soc., London, A164, 547-579(1938)