フォースプレート計測に基づく座位のバランス解析

Analysis of sitting balance based on force platform measurements

1. 緒言

人の立位姿勢のバランス制御は、視覚、前庭感覚、固有感 覚などのいくつかの感覚系から検出された身体の動揺に対 して、適切な修正トルクを作用させることによるフィードバ ック制御だと考えられている⁽¹⁾. 立位の研究では、複数のラ ンダムな摂動に対する姿勢応答に対し、フィードバック制御 モデルを仮定し、周波数領域でのシステム同定から減衰や遅 延時間といったフィードバックパラメータの推定を行った 報告がされている⁽¹⁾. しかし、座位の研究での報告は少ない. 座位でバランス制御モデルを仮定しパラメータ推定を行う ことで、乗り物酔いの評価や輸送機器搭乗者の応答解析に役 立てる可能性がある.

バランス解析の研究は、質量中心(COM)と圧力中心が望ましく⁽⁰⁾,一般的にモーションキャプチャシステム(MC)が用いられる.しかし、導入コストや計測負荷の問題がある.また、輸送機器搭乗者の応答計測では、車内の狭い閉鎖空間での撮影が困難である.そのため、本研究ではフォースプレート)(FP)による上半身の質量中心推定法⁽³⁾を用いる.

本研究の目的は, FP 計測に基づく座位の上半身の質量中 心推定法を利用して,座面が揺動する場合のバランス制御モ デルリングを行う.背もたれのない椅子に着座した場合を対 象とし,矢状面の前後方向に 0.05 Hz~1.5 Hz の周波数で座 面が揺動する座面揺動実験を行う.座位の力学モデルから導 出した理想的な伝達関数と,実験結果から得られた座面加速 度を入力,質量中心変位を出力とした周波数応答関数が一致 するようにパラメータ同定を行う.パラメータ同定の評価は, モーションキャプチャシステムとの比較により明らかにす る.

2. 質量中心推定法

2.1 座位の力学モデル

上半身の質量中心推定に用いる座位の力学モデルを図1に 示す.モデルは、骨盤の上端部(第5腰椎)を境界として、 骨盤を除く胴体部に頭部, 上腕, 前腕, 手部を加えた上半身, 骨盤,大腿部,下腿部,足部の5セグメントで構成する.左 右の脚部は一体として、膝関節角度は 90 度とする。脚部に 運動の自由度はなく、上半身のみが運動する1自由度系とみ なす.身体の上下運動はしないことを前提とし、上半身の傾 きを微小とした線形システムとする. 座標系は, 静止座標系 (X,Y,Z)と,座面からの相対座標系(x,y,z)を定義し,矢状面 前方をX,x軸, 左手方向をY,y軸, 鉛直上方向をZ,z軸とす る. X, は静止座標系における座面変位, x, は上半身の質量 中心変位とする.フォースプレートからの計測値は,鉛直力 を R_x , x 軸水平力を R_x , y 軸まわりのモーメントを N_x とし, 座面のフォースプレートの計測値を添え字1,足下のフォー スプレートの計測値を添え字2で表す. 各セグメントの質量 比, 質量中心まわりの y 軸に関する慣性モーメント, セグメ ント下端から質量中心までの長さ、セグメント長をm.L.L.L

航空宇宙工学コース 動的デザイン研究室 1255046 村上 博都

Fig. 1 COM estimation model from two force platforms.

で表す. 添え字uは上半身, pは骨盤, tは大腿部, lは下 腿部, f は足部をそれぞれ表す. これらの身体パラメータは 文献⁽⁴⁾⁽⁵⁾を参考に決定した.

2.2 FP 計測に基づく上半身の質量中心推定

図1のモデルから5つの剛体セグメントに関して鉛直,水 平,回転に関する15個の運動方程式が得られる.これらの 運動方程式から上半身の質量中心推定式は以下のようなFP の計測値と座面の加速度の関係式となる.

$$\tilde{\ddot{x}}_{u} = -\frac{1}{m_{u}} \left\{ M \ddot{X}_{s} + R_{x1} + R_{x2} \right\}$$
(1)

$$\tilde{x}_{u} = \frac{1}{m_{u}g} \left\{ K_{1} \ddot{\tilde{x}}_{u} + K_{2} \dot{K}_{s} + K_{3} + K_{4} \right\}$$
(2)

$$K_{1} = \frac{J_{u}}{l_{u}} - m_{u} \left(l_{p} + l_{f} - l_{u} - L_{p} - L_{l} - L_{f} \right) K_{2} = -m_{u} \left(l_{p} - l_{u} - L_{p} \right) - M \left(l_{f} - L_{l} - L_{f} \right) - m_{f} \left(L_{l} + L_{f} - l_{f} \right) - m_{l} \left(L_{l} - l_{l} \right) K_{3} = \left(m_{u} L_{l} + m_{p} L_{l} + m_{l} l_{l} \right) g K_{4} = R_{x1} \left(l_{p} + l_{f} - L_{f} - L_{l} \right) + R_{x2} l_{f} - R_{z1} L_{t} - N_{y1} - N_{y2}$$
(3)

ここに, g は重力加速度 $[m/s^2]$, \tilde{x}_u , \tilde{x}_u はそれぞれ上半身の 質量中心加速度と変位の推定値とする.

3. 座面摇動実験

本実験では、被験者は20代健常者7名(年齢:21.6±0.9, 身長:175.3±5.1 cm,体重:60.9±10.8 kg)とし、背もたれの ない揺動実験機を 0.05 Hz~1.5 Hz 帯域で 0.05 Hz 刻みの 30 個の周波数を印加した cos 波の重ね合わせで生成した加速度 で揺動させる実験である.このときの最大加速度は 0.3 m/s² とした.被験者の慣れに考慮し,加速度の波形を 5 パターン 用意した.計測時間は 65 秒,実験回数を 10 回とした.FP (TE-3040,テック技販)計測に基づくパラメータ同定の評 価のために光学式モーションキャプチャ (NAC3D System,

nac IMAGE TECHNOLOGY) を用いて計測した. すべての計 測機のサンプリング周波数は 100 Hz とした. 被験者には, 腕を身体の横で自然に下ろし, 膝の角度が 90 度になるよう に指示した.

解析区間は,開始5秒間を切り取った60秒とした.また, 座面を揺動させたとき,FPのx方向の水平力の計測値に慣 性力が作用するため,以下の式を用いて補正した.

$$\begin{array}{c} R_{x1} = \overline{R}_{x1} + C_1 \ddot{X}_s \\ R_{x2} = \overline{R}_{x2} + C_2 \ddot{X}_s \end{array}$$

$$\tag{4}$$

ここに, \bar{R}_{x_1} , \bar{R}_{x_2} は FP からの計測値とし, C_1 , C_2 は補正係数 で, それぞれ C_1 = 3.28, C_2 = 4.07 と決定した.

4. 座位のバランスモデリング

4.1 バランス制御モデルの定義

機構モデルは図1に示すモデルとすると、運動方程式は次 のようになる.

$$\left(\frac{J_u}{l_u} + m_u l_u\right) \ddot{x}_u(t) - m_u g x_u(t) = -m_u l_u \ddot{X}_s(t) + N_{hip}(t)$$
(5)

ここに、 N_{hip} は腸骨稜まわりのトルク(腰部トルク)である. 制御モデルとして、腰部トルク N_{hip} は座面を原点とした質量 中心変位と静止座標系での頭部加速度の 2 つの状態遅延フ ィードバック制御と座面の速度に応じた目標変位の調節を 組み合わせた制御系と仮定し、次のような式を定義する.

 $T_R \dot{\overline{x}}_u + \overline{x}_u = -G_R \dot{X}_s$

ここに、 \bar{x}_{u} は質量中心の目標変位、 K_{p} は比例ゲイン、 K_{D} は微分ゲイン、 K_{H} は加速度ゲイン、 T_{D} は遅延時間、 G_{R} は目標変位を決める1次フィルタのゲイン、 T_{R} は同フィルタの時定数である.これら6つの未知パラメータを実験結果から同定する.

4.2 周波数応答線図

3節の座面揺動実験の結果より,MC計測に基づく推定と FP計測に基づく推定の2つに対して,入力を座面加速度の フーリエ係数,出力を質量中心変位のフーリエ係数とする周 波数応答関数を得る.図2(a)に,この2つの周波数応答関数 から周波数応答線図を示す.図2(a)は,被験者1の10回の 実験の平均を示しており,黒丸はMCから導出した周波数応 答線図の結果,赤丸はFPから導出した周波数応答線図の結 果を示し,標準偏差をエラーバーで示す.図2より,黒丸と 赤丸に大きな違いはみられず,概ね一致している.

5. 伝達関数のフィッティングとパラメータ同定

式(5),式(6)から得られる理想的な伝達関数が実験データから得られる周波数応答関数に一致するように,非線形最小 二乗法によるフィッティングを行った.同定したパラメータ

Table. 1Balance control parameters identified
from frequency response test.

	Subject					
	1		4		7	
	MC	FP	MC	FP	MC	FP
K_{P}	684.3	768.3	561.9	574.0	333.4	336.7
K_D	188.3	197.1	144.9	147.2	114.7	111.8
K_{H}	7.754	6.185	5.174	5.033	4.984	5.055
T_D	0.194	0.158	0.180	0.169	0.194	0.174
T_R	0.22	0	0.16	0.160	1.44	1.600
G_{R}	0.037	0.037	0.042	0.043	0.045	0.051

を含む伝達関数から得られる周波数応答関数を図 2(b)に示 す.また,同定した未知パラメータを表1に示す.図 2(b), 表1より,FP計測から推定した質量中心変位を用いても大 きな違いなく,周波数応答線図,パラメータを導出できたと 考えられる.

6. 結言

本研究では, FP 計測に基づいて, 背もたれのない椅子に着 座し, 矢状面方向に揺動を与えたときに対する座位のバラン スモデリングとパラメータ同定手法を提案した. 座位のバラ ンスモデリングは, 質量中心変位と頭部加速度の状態遅延フ ィードバック制御と座面速度に応じた目標変位の調節を組 み合わせた制御系と仮定した. そのモデルを用いて, FP 計測 から推定した質量中心変位からパラメータ同定を行い, MC 計測と同等の結果を得られた.

文献

- Peterka, R. J., "Sensorimotor Integration in Human Postural Control", Journal of neurophysiology, vol. 88, pp. 1097-1118, 2002.
- (2) Winter, D., "Human balance and posture control during standing and walking", Gait & posture, vol. 3, No. 4, pp. 193-214, 1995.
- 村上博都,園部元康,"フォースプレート計測に基づく座位の上半身質量中心推定",日本機械学会論文集, vol. 89, No. 917, pp. 22-00294, 2023.
- (4) 阿江通良,湯海鵬,横井孝志,"日本人アスリートの 身体部分慣性特性の推定",バイオメカニズム, vol. 11, pp. 23-33, 1992.
- (5) Contini, R., "Body segment parameters", Part II, Artificial limbs, vol. 16, No. 1, pp. 1-19, 1972.