フレネル反射型センサを用いた樹脂の硬化度解析手法の改良

システム工学群

先端機械・航空材料工学研究室 1220054 川村 翔悟

1. 緒言

FRP は,軽量でありながらも高い強度と剛性を持つ樹脂を 繊維で強化した複合材料である.自動車のボディや航空機の 翼など,幅広い先進製品に利用されている.FRP の成形過程 では,一定温度で初期硬化し,その後より高温な条件で完全 硬化するポストキュア工程が一般的である.しかし,ポスト キュア工程を含む硬化度モニタリングについてはあまり研 究が進んでいなかった.

我々は単純な光学系を持ち,高速で精度の高い硬化度推定 が可能なフレネル反射型光ファイバセンサに注目し,FRPの 硬化度測定システムを開発してきた.このセンサは,3D 複雑 形状の FRP でも高い精度で硬化度を測定できることが分か っている.しかし,未硬化前に冷却すると硬化度の測定が正 確でないことが判明した.そこで,本研究では,一次硬化か らポストキュアまでのプロセスにおける冷却過程を含めて FRPの硬化度を正確に測定できるセンサシステムの開発を目 指した.

2. フレネル反射型光ファイバセンサによる硬化度測定法

フレネル反射型光ファイバセンサを使用することで,屈折 率の変化から硬化度を推定することが可能である.図1では, このセンサによる屈折率測定の概略図が示されている.光源 からの光が光ファイバ端部に到達し,端部ではガラスと樹脂 の屈折率の不一致によってフレネル反射が発生する.そして, 反射された光はサーキュレーターを経由して受光器に伝播 し,その光量を計測する.

これまで,我々はフレネル反射型光ファイバセンサによっ て測定された光量から屈折率変化を計算し,その屈折率変化 から硬化度を推定する手法を提案してきた.これには,図3 の左側の温度-屈折率変化曲線に示されるように,硬化度に 応じて屈折率が変化するというモデルを採用していた.しか し,このモデルは温度が完全硬化のTgより高い場合には正 しいが,それより低い場合には,正しくない.

完全硬化時の屈折率は、完全硬化時のガラス転移点(Tg) に関連付けられるが、実際には硬化度が低い場合、Tg は明確 には現れない.また、図2に示されるように、硬化度が60% を超えるとセンサ先端には熱および硬化応力が発生し、屈折 率に影響を与えてしまう.図3の左側の完全硬化時の曲線は、 この応力の影響を反映しているが、硬化度が低い場合、この 影響は現れない.そのため、本研究では図3の右側に示され る解析モデルを提案する.硬化度が低い場合、センサ先端に 生じる応力の影響を受けない屈折率曲線(図中の点線)に到 達し、硬化度に比例して屈折率が変化するが、硬化度が60% を超えるとセンサ先端に生じる応力の影響を受けた曲線に 達すると考えられる.本研究では、この曲線を特定するため に、加熱冷却を繰り返した樹脂の屈折率測定試験を行った.

Fig. 1 Schematic view of refractive index measurement by Fresnel-based optical fiber sensor

Fig. 2 Resins adjacent to an optical fiber subject to stress during molding.

Fig. 3 Analysis model of calculation of degree of cure from relationship between temperature and refractive index variation.

3. 実験方法

エポキシ樹脂の主剤(ARALDITE®LY5052)と硬化剤 (ARADUR®5052CH)を比率100:38 で混合し,混合時に生じ る気泡を除去するために真空引きによる脱泡処理を行った. シリコン型から切り抜いた台形に樹脂を注入し,熱電対と光 ファイバセンサを用いて硬化度を測定した.温度条件は,設 定温度まで昇温させた後,炉を開放する.5℃急冷させたら, 再び設定温度まで昇温させる.この加熱冷却サイクルを完全 硬化するまで繰り返した.なお,設定温度は50℃,60℃,70℃, 80℃,90℃,100℃とした.図4では,設定温度が50℃,60℃, 70℃,80℃,90℃,100℃の温度条件を示している.

Fig. 4 Relationship between temperature and time (50, 60, 70, 80, 90, 100° C)

4. 実験結果と考察

実験結果より, 設定温度が 80℃の場合を除き, 屈折率の変 化は温度に対して直線となることが確認された. これにより, Tg を含まない温度範囲では, 屈折率の温度依存性が硬化度に のみ依存することが示唆された. 一方, 設定温度が 80℃の場 合には, 74℃前後で Tg が観測され, 屈折率曲線の傾きが変 化することが分かった. また, 硬化の進展に伴い, Tg が高温 側に移動していることが明らかになった.

図6において,各設定温度での屈折率nと温度Tの曲線の 傾き dn/dTと硬化度の関係が示された.図から,設定温度が 50℃,60℃,および70℃の条件では,硬化度が70%付近まで 傾き dn/dTが一定であることが明らかになった.さらに,硬 化度が70%を超えると,傾きが上昇し,硬化度に比例して完 全硬化時の傾きに近づくことが示された.従来のモデルでは, すべての硬化度で傾きが硬化に比例すると仮定されていた が,これが誤りであることが明らかになった.

80℃,90℃,および100℃の条件では、dn/dT は硬化度に 比例して減少した.ガラス転移点より高い温度での完全硬化 時の傾きに近づいた.しかし、硬化が進み、Tg が現れると、 Tg 温度以下の傾きに向かって急激に上昇した.

これらのことは、図3右の新しいモデルの妥当性を示して いる.Tgの発現していない硬化度においては、傾きはフ ァイバ先端の応力の影響の無い完全硬化時の傾きに硬 化度に比例して近づくと考えられる.そのため、本研 究で用いた樹脂については、応力の影響の無い完全硬 化時の傾きは未硬化時とほぼ同じであることが分かっ た.しかしTgが発現すると応力の影響により傾きは上 昇した.よって、屈折率変化の傾きは以下の式で表す ことが出来る.

 $\frac{dn}{dT} = \beta_0 + (\tilde{\beta}_1 - \beta_0)\alpha \qquad T > T_g \text{ or } \alpha < \alpha_{Tg}$ $\frac{dn}{dT} = \beta_0 + (\tilde{\beta}_1 - \beta_0)\alpha_{Tg} + (\beta_1 - \tilde{\beta}_1)\left(\frac{\alpha - \alpha_{Tg}}{1 - \alpha_{Tg}}\right)$

$T \leq T_g$ and $\alpha \geq \alpha_{Tg}$

ここで β_0 は未硬化時の傾き、 $\tilde{\beta}_1$ はファイバ先端応力の影響の 無い完全硬化時の傾き、 β_1 は応力の影響を受けた完全硬化時 の傾き、 α_{Tg} は Tg の発現する硬化度である.なお、 $\tilde{\beta}_1 \geq \beta_1$ は Tg 前後で値が変化することに注意されたい.このモデルを用 いて硬化度を計算するには測定直前の硬化度を知る必要が あるが、硬化度は時間に対して単調増加であるので、運用時 には問題にはならないだろうと考える.

Fig. 6 Relationship between slope of refractive index and DOC

5. 結言

本研究では,FRP が未硬化前に冷却すると硬化度の測定が 正確でない従来モデルの改良を提案した.そのために,加熱 冷却硬化試験を行った.その結果,従来モデルに比べて,ガ ラス転移点付近の温度で硬化度に対する振る舞いが異なる ことが分かった.よって,より正確な屈折率の温度依存性を 示すモデルを表すことが出来た.

参考文献

(1) M. R. Wisnom, M. Gigliotti, N. Ersoy, M. Campbell, and K. D. Potter, Composites Part A, 37, pp. 522-529, (2006).

(2) L. Mezeix, A. Seman, M. N. M. Nasir, Y. Aminanda,
A. Rivai, B. Castanié, P. Olivier, and K. M. Ali,
Composite Structures, 124, pp. 196-205, (2015).
(3) 藤岡玄紘, 高坂達郎, 日本複合材料学会誌, 47, pp. 116-125, (2021)