UAV 搭載カメラを用いた植生観測における

RGB データの正規化とその有効性

1240012 伊藤 祐太朗

高知工科大学 システム工学群 建築・都市デザイン専攻

本研究室では、2019年から里山研究フィールドで定期的に UAV 搭載デジタルカメラを用いて、植生観測を行なってい る. UAV を用いた観測において、光源によって反射光の量と質が変化することが課題である.本研究では、空撮画像の画素 値の正規化を行うことで、樹木の色の特定を行う手法を開発し、正規化の有効性の確認を行った.結果、太陽高度の影響を 受けていた画素値を正規化することにより、色の特定が可能となった.同じ位置での日影と日向の比較までは至らなか ったため、今後は多時期、多樹木の観測が必要である.

Key Words: UAV, BRDF, 正規化

1. はじめに

可視・近赤外の衛星リモートセンシングでは,衛星 に放射計を搭載し,観測対象物や地表などからの反 射光を観測している.全球レベルの観測になるため、 人工衛星の観測には限界があり,一機で多頻度,高分 解能の観測ができるセンサはない.これに対して UAV を用いた観測は,高分解能で撮影した画像を取 得できる.

本研究室では,2019 年から里山研究フィールドで 定期的に UAV 搭載デジタルカメラを用いて,植生観 測を行なっている.植物の季節変化や経年変化を捉 えるためには,正確な色情報の取得が不可欠である. しかし,UAV を用いた観測において,光源によって反 射光の強さや波長分布が変化することが課題である. 反射量を反射率や反射係数に変換することができれ ば,植生の色の変化を異なる観測日や異なる地域で 評価できるようになる.

村井は,曇りの日に観測した時系列観測データの RGB の正規化を用いた植物の生物季節観測を行っ た.¹⁾また若吉は,デジタルカメラの Raw データから 明るさを正確に測る手法を構築した.²⁾しかし,晴れ の日の観測データでは観測位置と太陽位置からなる 位相角度 θ (図 1)により,地物の反射量が大きく変 化し,画像の明るさが変化する.

図1 UAV 観測における太陽との位相角度

観測する時期や時間が異なると太陽の位置は変わ るため,植物の色を評価するには,太陽と観測位置を 考慮する必要がある.

一方で位相角度θによる影響が色における色相や 彩度にも影響を与えているかは明らかではない.そ こで、本研究では、デジタルカメラから得られる RGB の3つのバンド情報から求められる正規化 RGB へ変 換することで、位相角度θが明度に及ぼす影響を明 らかにすることを目的とした.

2. 使用データ

2.1 対象樹木と観測日時

対象樹木の位置を図2に示す.

図2 対象樹木の位置

本研究では,図2で示した対象樹木を3時期観測した.表1に観測日と観測中央時刻,太陽高度を示す.

観測日時	太陽高度
冬: 2023年1月31日12時27分	38.82°
春: 2023年3月29日12時25分	59.25°
夏:2023年6月19日12時27分	78.54°

3 季節の観測データを用いる理由は,常緑樹の葉の 色の変化を観測するために1月,3月,6月の観測デ ータを用いた.

2.2 観測機器

本研究で使用した観測機器を表2に示す.

表2 観測機器

UAV 機体	MATRICE 300 RTK
搭載カメラ	Zenmuse P1
RTK-GNSS 受信機	D_RTK 2

UAV は DJI 社の「MATRICE 300 RTK」, デジタルカメ ラは同社の写真測量用カメラ「Zenmuse P1」である. 飛行ルートを設定し, 自動飛行により植生観測を行 なっている.「Zenmuse P1」の静止画解像度は 8192 ×5460 である. RTK-GNSS 測位のための受信機は, 同 社の「D-RTK 2」を使用した. RTK-GNSS とは, 固定点 と移動観測点の2点を同時に観測することで精度の 高い測位を行える.「D-RTK 2」の測位精度(水平方向) は 2cm である. 飛行高度は離発着地点から 135m に固 定した. その際の地上分解能は離発着地点で 1.05cm/pixel あり,1 度の飛行で約 400 枚程度撮影 している.

2.3 3次元点群データの作成

3 次元点群データの作成には,SfM(Structure from Motion)を用いた.SfMとは対象物を多方向から 撮影した複数枚の写真から,3 次元形状を復元する 技術である.1 つの点には直交座標(XYZ)と色情報 (RGB)が属性値として付与される.SfM 処理に は,Agisoft 社のソフトウェア「metashape」を使用 した.

2.4 原画像ごとの位相角度θの算出

対象樹木を基点とする太陽ベクトル \vec{s} と UAV ベクト ル \vec{q} からなる位相角度 θ を算出するフローを図 3 に 示す.

図3 位相角度 θ 算出フロー

3. 解析手法

3.1 RGB 値の正規化

RGB 値の正規化のフローを図4に示す.

3.2 画像校正

デジタルカメラで撮影されたデータは Raw ファイ ル形式で保存されている. Raw ファイル形式は, カメ ラのイメージセンサが捉えた光を DN(Digital Number)として保存している.

画像として見るには現像処理が必要である. Raw 現像の際には, センサに由来するエラー値の 1 つバ ッドピクセルの特定と除去を行う. バッドピクセル とは, 常に明るい点(ホットピクセル)や光が当たっ ているのに暗い点(デッドピクセル)のようなピクセ ルエラーのことである.

現像後周辺減光補正を行う.周辺減光とは,画像の 四隅が暗くなる現象のことである.

3.3 原画像ごとの対象樹木のポリゴン作成

校正後の画像を用いて,原画像ごとの対象樹木の ポリゴンを目視で作成した.図5は2023年6月19 日に撮影された原画像に写るスギのポリゴンを目視 で作成し,重ねたものである.固地点の樹木は1つ の観測ごとにおよそ25枚撮影されており,原画像ごとに 同じ樹木のポリゴンを作成した.

図5 原画像から対象樹木を目視で取得 (2023/6/19 撮影)

3.4 RGB 値の正規化に用いた式

作成したポリゴン内の RGB の DN の平均値を算出し, 式(a)を用いて正規化を行った.

 $N(G) = \frac{DN(G)}{DN(R) + DN(G) + DN(B)} \qquad (a)$

DN(R):ポリゴン内の赤バンドDNの平均値 DN(G):ポリゴン内の緑バンドDNの平均値 DN(B):ポリゴン内の青バンドDNの平均値

4. 解析結果

冬における対象樹木アラカシの樹頂点を原点とし, 観測方向ごとに緑のベクトルの長さを緑バンドの DNとして表したものを図6左に示す.さらに,観測時 における太陽の向きをオレンジのベクトルで表した. 図6右は,正規化Gを緑のベクトルの長さで表した. 夏の解析結果を図7に示す.図8から図11も同様の 手法で示すホウライチク,スギの解析結果である.

図から RGB を正規化すると,正規化前に比べ,長さ がほとんど均一になったことがわかる.正規化前の グラフは長さがで樹木や時期による比較が困難であ ったが,正規化することで比較が容易になったこと がわかる.例えば,図6と図7の正規化後のグラフを 比較すると,線が長くなったことがわかる.つまり, アラカシは1月より6月の方が緑の割合が多いため, 彩度や色相の変化が見られる.この変化が他の樹木 でも見ることができる.また,冬と夏の正規化前のグ ラフを比較すると,太陽高度の高い夏の方が位相角 度による明度の差が大きいことが分かる.つまり,夏 に撮影された画像では RGB を正規化することで色の 変化を把握しやすいと考えられる.

5. おわりに

本研究では、RGB の正規化を行うことで、位相角度 が色に与える影響を明らかにした.これにより、位相 角度による変化は明度に与える影響が大きいことが 分かった.そのため、正規化 RGB は位相角度 θ に依存 しないため、植生の色の観測に適している.つまり、 晴れの日でも植生観測による色の評価が可能である ことを示した.しかし、同じ日の日影と日向の比較ま では至らなかったため、今後は多時期、多樹木の観測 が必要である.

6. 参考文献

 1) 村井 亮介・高木 方隆.2020,UAV 画像における植 生観測のためのカゲ補正手法,写真測量とリモート センシング,59,5,203-213
2) 若吉 慧門.2024,UAV 搭載デジタルカメラ画像を 用いた樹木の二方向性反射特性

正規化前 G 正規化後 G 図 8 2023/01/31(冬)ホウライチク

図9 2023/06/19(夏) ホウライチク

